Transport equations for subdiffusion with nonlinear particle interaction

被引:26
作者
Straka, P. [1 ]
Fedotov, S. [2 ]
机构
[1] UNSW Australia, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Anomalous diffusion; Aggregation; Volume filling; Cell adhesion; Reaction-diffusion equations; TIME RANDOM-WALKS; CHEMOTAXIS EQUATIONS; ANOMALOUS DIFFUSION; LIMIT DYNAMICS; CELL ADHESION; AGGREGATION; SYSTEMS; DERIVATION; MIGRATION; GUIDE;
D O I
10.1016/j.jtbi.2014.11.012
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 43 条
[21]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[22]   Mean-field descriptions of collective migration with strong adhesion [J].
Johnston, Stuart T. ;
Simpson, Matthew J. ;
Baker, Ruth E. .
PHYSICAL REVIEW E, 2012, 85 (05)
[23]   Fractional chemotaxis diffusion equations [J].
Langlands, T. A. M. ;
Henry, B. I. .
PHYSICAL REVIEW E, 2010, 81 (05)
[24]   SEMI-MARKOV APPROACH TO CONTINUOUS TIME RANDOM WALK LIMIT PROCESSES [J].
Meerschaert, Mark M. ;
Straka, Peter .
ANNALS OF PROBABILITY, 2014, 42 (04) :1699-1723
[25]   Tempered anomalous diffusion in heterogeneous systems [J].
Meerschaert, Mark M. ;
Zhang, Yong ;
Baeumer, Boris .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (17)
[26]   Limit theorems for continuous-time random walks with infinite mean waiting times [J].
Meerschaert, MM ;
Scheffler, HP .
JOURNAL OF APPLIED PROBABILITY, 2004, 41 (03) :623-638
[27]  
Mendez V, 2010, SPRINGER SER SYNERG, P1, DOI 10.1007/978-3-642-11443-4
[28]   Density-dependent dispersal and population aggregation patterns [J].
Mendez, Vicenc ;
Campos, Daniel ;
Pagonabarraga, Ignacio ;
Fedotov, Sergei .
JOURNAL OF THEORETICAL BIOLOGY, 2012, 309 :113-120
[29]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[30]   Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces [J].
Mierke, Claudia Tanja ;
Frey, Benjamin ;
Fellner, Martina ;
Herrmann, Martin ;
Fabry, Ben .
JOURNAL OF CELL SCIENCE, 2011, 124 (03) :369-383