A Comparative Study of Sentiment Analysis Using NLP and Different Machine Learning Techniques on US Airline Twitter Data

被引:2
作者
Tusar, Md Taufiqul Haque Khan [1 ]
Islam, Md Touhidul [1 ]
机构
[1] City Univ, Dept Comp Sci & Engn, Dhaka 1216, Bangladesh
来源
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021) | 2021年
关键词
Sentiment Analysis; Machine Learning; SVM; Logistic Regression; Airline; Twitter;
D O I
10.1109/ICECIT54077.2021.9641336
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Today's business ecosystem has become very competitive. Customer satisfaction has become a major focus for business growth. Business organizations are spending a lot of money and human resources on various strategies to understand and fulfill their customer's needs. But, because of defective manual analysis on multifarious needs of customers, many organizations are failing to achieve customer satisfaction. As a result, they are losing customer's loyalty and spending extra money on marketing. We can solve the problems by implementing Sentiment Analysis. It is a combined technique of Natural Language Processing (NLP) and Machine Learning (ML). Sentiment Analysis is broadly used to extract insights from wider public opinion behind certain topics, products, and services. We can do it from any online available data. In this paper, we have introduced two NLP techniques (Bag-of-Words and TF-IDF) and various ML classification algorithms (Support Vector Machine, Logistic Regression, Multinomial Naive Bayes, Random Forest) to find an effective approach for Sentiment Analysis on a large, imbalanced, and multi-classed dataset. Our best approaches provide 77% accuracy using Support Vector Machine and Logistic Regression with Bag-of-Words technique.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Cross Domain Sentiment Analysis Using Different Machine Learning Techniques
    Mahalakshmi, S.
    Sivasankar, E.
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON FUZZY AND NEURO COMPUTING (FANCCO - 2015), 2015, 415 : 77 - 87
  • [42] Machine learning techniques for sentiment analysis
    Lopez, Jessica Olivares
    Lopez, Abraham Sanchez
    Velazquez, Rogelio Gonzalez
    Diaz, Maria del Carmen Santiago
    Vazquez, Ana Claudia Zenteno
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2024, 15 (05): : 6 - 16
  • [43] Sentiment Analysis using Machine Learning Techniques on Python']Python
    Rathee, Nisha
    Joshi, Nikita
    Kaur, Jaspreet
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 779 - 785
  • [44] Sentiment analysis of malayalam tweets using machine learning techniques
    Soumya, S.
    Pramod, K., V
    ICT EXPRESS, 2020, 6 (04): : 300 - 305
  • [45] Sentiment Analysis using Various Machine Learning Techniques: A Review
    Yadav P.
    Kathuria M.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (02) : 79 - 84
  • [46] Study of Machine Learning Techniques for Sentiment Analysis
    Nair, Rajeev Raveendran
    Mathew, Joel
    Muraleedharan, Vaishakh
    Kanmani, S. Deepa
    PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), 2019, : 978 - 984
  • [47] Applying Machine Learning Techniques for Sentiment Analysis in the Case Study of Indian Politics
    Patil, Annapurna P.
    Doshi, Dimple
    Dalsaniya, Darshan
    Rashmi, B. S.
    ADVANCES IN SIGNAL PROCESSING AND INTELLIGENT RECOGNITION SYSTEMS, 2018, 678 : 351 - 358
  • [48] Optimal Machine Learning Driven Sentiment Analysis on COVID-19 Twitter Data
    Fakieh, Bahjat
    AL-Ghamdi, Abdullah S. AL-Malaise
    Saleem, Farrukh
    Ragab, Mahmoud
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 81 - 97
  • [49] Performance Analysis of Supervised Machine Learning Techniques for Sentiment Analysis
    Samal, Biswa Ranjan
    Behera, Anil Kumar
    Panda, Mrutyunjaya
    2017 IEEE 3RD INTERNATIONAL CONFERENCE ON SENSING, SIGNAL PROCESSING AND SECURITY (ICSSS), 2017, : 128 - 133
  • [50] Sentiment analysis of Twitter data during Farmers' Protest in India through Machine Learning
    Singh, Abhiraj
    Kalra, Nidhi
    Singh, Amritpal
    Sharma, Seemu
    PROCEEDING OF THE 2ND 2022 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSASE 2022), 2022, : 121 - 126