Playing Carcassonne with Monte Carlo Tree Search

被引:0
|
作者
Ameneyro, Fred Valdez [1 ]
Galvan, Edgar [1 ]
Fernando, Angel [2 ]
Morales, Kuri [2 ]
机构
[1] Maynooth Univ, Naturally Inspired Computat Res Grp, Dept Comp Sci, IIamilton Inst, Maynooth, Kildare, Ireland
[2] Univ Nacl Autonoma Mexico, Dept Comp Sci, Mexico City, DF, Mexico
基金
爱尔兰科学基金会;
关键词
Carcassonne; MCTS; MCTS-RAVE; expectimax; Star2.5; stochastic game;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monte Carlo Tree Search (MCTS) is a relatively new sampling method with multiple variants in the literature. They can be applied to a wide variety of challenging domains including board games, video games, and energy-based problems to mention a few. In this work, we explore the use of the vanilla MCTS and the MCTS with Rapid Action Value Estimation (MCTS-RAVE) in the game of Carcassonne, a stochastic game with a deceptive scoring system where limited research has been conducted. We compare the strengths of the MCTS-based methods with the Star2.5 algorithm, previously reported to yield competitive results in the game of Carcassonne when a domain-specific heuristic is used to evaluate the game states. We analyse the particularities of the strategies adopted by the algorithms when they share a common reward system. The MCTS-based methods consistently outperformed the Star2.5 algorithm given their ability to find and follow long-term strategies, with the vanilla MCTS exhibiting a more robust game-play than the MCTS-RAVE.
引用
收藏
页码:2343 / 2350
页数:8
相关论文
共 50 条
  • [31] Monte Carlo Tree Search for Love Letter
    Omarov, Tamirlan
    Aslam, Hamna
    Brown, Joseph Alexander
    Reading, Elizabeth
    19TH INTERNATIONAL CONFERENCE ON INTELLIGENT GAMES AND SIMULATION (GAME-ON(R) 2018), 2018, : 10 - 15
  • [32] Incentive Learning in Monte Carlo Tree Search
    Kao, Kuo-Yuan
    Wu, I-Chen
    Yen, Shi-Jim
    Shan, Yi-Chang
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2013, 5 (04) : 346 - 352
  • [33] Monte Carlo Tree Search With Reversibility Compression
    Cook, Michael
    2021 IEEE CONFERENCE ON GAMES (COG), 2021, : 556 - 563
  • [34] Time Management for Monte Carlo Tree Search
    Baier, Hendrik
    Winands, Mark H. M.
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2016, 8 (03) : 301 - 314
  • [35] Parallel Monte-Carlo Tree Search
    Chaslot, Guillaume M. J. -B.
    Winands, Mark H. M.
    van den Herik, H. Jaap
    COMPUTERS AND GAMES, 2008, 5131 : 60 - +
  • [36] Parallel Monte Carlo Tree Search on GPU
    Rocki, Kamil
    Suda, Reiji
    ELEVENTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2011), 2011, 227 : 80 - 89
  • [37] Monte Carlo Tree Search in Lines of Action
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2010, 2 (04) : 239 - 250
  • [38] Monte-Carlo Tree Search Solver
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    COMPUTERS AND GAMES, 2008, 5131 : 25 - +
  • [39] Text Matching with Monte Carlo Tree Search
    He, Yixuan
    Tao, Shuchang
    Xu, Jun
    Guo, Jiafeng
    Lan, YanYan
    Cheng, Xueqi
    INFORMATION RETRIEVAL, CCIR 2018, 2018, 11168 : 41 - 52
  • [40] Monte Carlo Tree Search with Boltzmann Exploration
    Painter, Michael
    Baioumy, Mohamed
    Hawes, Nick
    Lacerda, Bruno
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,