Transition edge sensor-based detector: from X-ray to γ-ray

被引:0
作者
Zhang, Shuo [1 ]
Xia, Jing-Kai [1 ]
Sun, Tao [2 ]
Wu, Wen-Tao [2 ]
Wu, Bing-Jun [2 ]
Wang, Yong-Liang [2 ]
Cantor, Robin [3 ]
Han, Ke [4 ,5 ]
Zhou, Xiao-Peng [6 ]
Liu, Hao-Ran [7 ]
Fan, Fu-You [7 ]
Guo, Si-Ming [7 ]
Liang, Jun-Cheng [7 ]
Li, De-Hong [7 ]
Song, Yan-Ru [1 ]
Ju, Xu-Dong [1 ]
Fu, Qiang [1 ]
Liu, Zhi [1 ]
机构
[1] ShanghaiTech Univ, Ctr Transformat Sci, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[3] STAR Cryoelect, 25-A Bisbee Court, Santa Fe, NM 87508 USA
[4] Shanghai Jiao Tong Univ, Shanghai Lab Particle Phys & Cosmol, INPAC, Shanghai 200240, Peoples R China
[5] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China
[6] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
[7] Natl Inst Metrol, Div Ionizing Radiat, NIM, 18 Bei San Huan Dong Lu, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Synchrotron radiation instrumentation; X-ray spectrometers; Cryogenic detectors; Transition edge sensor; SPECTROSCOPY; SPECTROMETER; CALORIMETER;
D O I
10.1007/s41365-022-01071-5
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A transition edge sensor (TES) is extremely sensitive to changes in temperature, and combined with a high-Z metal of a certain thickness, it can realize high-energy resolution measurements of particles such as X-rays. X-rays with energies below 10 keV have a weak penetrating ability, hence, only gold or bismuth of a few micrometers in thickness can guarantee a quantum efficiency higher than 70%. Therefore, the entire structure of the TES X-ray detector in this energy range can be realized using a microfabrication process. However, for X-rays or gamma-rays from 10 keV to 200 keV, submillimeter absorber layers are required, which cannot be realized using the microfabrication process. This paper first briefly introduces a set of TES X-ray detectors and their auxiliary systems, and then focuses on the introduction of the TES gamma-ray detector with an absorber based on a submillimeter lead-tin alloy sphere. The detector achieved a quantum efficiency above 70% near 100 keV and an energy resolution of approximately 161.5 eV at 59.5 keV.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Prototype of the high sensitive X-ray microcalorimeter for X-ray imaging
    Kudo, H
    Nakamura, T
    Arakawa, T
    Ohtsuka, S
    Izumi, T
    Shoji, S
    Sato, H
    Kobayashi, H
    Mori, K
    Homma, T
    Osaka, T
    Mitsuda, K
    Yamasaki, NY
    Fujimoto, R
    Iyomoto, N
    Oshima, T
    Futamoto, K
    Takei, Y
    Ichitsubo, T
    Fujimori, T
    Ishisaki, Y
    Morita, U
    Koga, T
    Sato, K
    Ohashi, T
    Kuroda, Y
    Onishi, M
    Otake, K
    Beppu, F
    SENSORS AND ACTUATORS A-PHYSICAL, 2004, 114 (2-3) : 171 - 175
  • [42] Gamma-Ray Transition-Edge Sensor Microcalorimeters on Solid Substrates
    Iyomoto, Naoko
    Kawakami, Hisao
    Maehata, Keisuke
    Yoshimine, Ikumi
    Shuto, Yuki
    Nagayoshi, Kenichiro
    Mitsuda, Kazuhisa
    Ezaki, Shohei
    Takano, Akira
    Yoshimoto, Shota
    Ishibashi, Kenji
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) : 82 - 87
  • [43] Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors
    Doriese, W. B.
    Morgan, K. M.
    Bennett, D. A.
    Denison, E. V.
    Fitzgerald, C. P.
    Fowler, J. W.
    Gard, J. D.
    Hays-Wehle, J. P.
    Hilton, G. C.
    Irwin, K. D.
    Joe, Y. I.
    Mates, J. A. B.
    O'Neil, G. C.
    Reintsema, C. D.
    Robbins, N. O.
    Schmidt, D. R.
    Swetz, D. S.
    Tatsuno, H.
    Vale, L. R.
    Ullom, J. N.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) : 389 - 395
  • [44] Gamma-Ray Transition-Edge Sensor Microcalorimeters on Solid Substrates
    Naoko Iyomoto
    Hisao Kawakami
    Keisuke Maehata
    Ikumi Yoshimine
    Yuki Shuto
    Kenichiro Nagayoshi
    Kazuhisa Mitsuda
    Shohei Ezaki
    Akira Takano
    Shota Yoshimoto
    Kenji Ishibashi
    Journal of Low Temperature Physics, 2016, 184 : 82 - 87
  • [45] Silicon pixel detector for X-ray spectroscopy.
    Seller, P
    Gannon, WJF
    Holland, A
    Iles, G
    Lowe, B
    Prydderch, ML
    Thomas, SL
    Wade, R
    EUV, X-RAY, AND GAMMA-RAY INSTRUMENTATION FOR ASTRONOMY IX, 1998, 3445 : 584 - 592
  • [46] Performance of an energy resolving X-ray pixel detector
    Bates, R
    Derbyshire, G
    Gannon, WJF
    Iles, G
    Lowe, B
    Mathieson, K
    Passmore, MS
    Prydderch, M
    Seller, P
    Smith, K
    Thomas, SL
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 477 (1-3) : 161 - 165
  • [47] Experimental simulation of a spectroscopic pixel X-ray detector
    Reinhart, C
    Giersch, J
    Uhlmann, N
    Anton, G
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 546 (1-2) : 205 - 208
  • [48] Superconducting Transition Edge Sensor for Gamma-Ray Spectroscopy
    Ohno, Masashi
    Irimatsugawa, Tomoya
    Takahashi, Hiroyuki
    Otani, Chiko
    Yasumune, Takashi
    Takasaki, Koji
    Ito, Chikara
    Ohnishi, Takashi
    Koyama, Shin-ichi
    Hatakeyama, Shuichi
    Damayanthi, R. M. Thushara
    IEICE TRANSACTIONS ON ELECTRONICS, 2017, E100C (03): : 283 - 290
  • [49] Characterization and modeling of transition edge sensors for high resolution X-ray calorimeter arrays
    Saab, T
    Apodacas, E
    Bandler, SR
    Boyce, K
    Chervenak, J
    Figueroa-Feliciano, E
    Finkbeiner, F
    Hammock, C
    Kelley, R
    Lindeman, M
    Porter, FS
    Stahle, CK
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 520 (1-3) : 281 - 284
  • [50] Development of Transition-Edge Sensor X-ray Microcalorimeter Linear Array for Compton Scattering and Energy Dispersive Diffraction Imaging
    U. Patel
    R. Divan
    L. Gades
    T. Guruswamy
    D. Yan
    O. Quaranta
    A. Miceli
    Journal of Low Temperature Physics, 2020, 199 : 384 - 392