Fuzzy Logic Programming for Tuning Neural Networks

被引:6
|
作者
Moreno, Gines [1 ]
Perez, Jesus [1 ]
Riaza, Jose A. [1 ]
机构
[1] Univ Castilla La Mancha, Dept Comp Syst, Albacete 02071, Spain
来源
关键词
Neural networks; Fuzzy logic programming; Tuning;
D O I
10.1007/978-3-030-31095-0_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wide datasets are usually used for training and validating neural networks, which can be later tuned in order to correct their final behaviors according to a few number of test cases proposed by users. In this paper we show how the FLOPER system developed in our research group is able to perform this last task after coding a neural network with a fuzzy logic language where program rules extend the classical notion of clause by including on their bodies both fuzzy connectives (useful for modeling activation functions of neurons) and truth degrees (associated with weights and biases in neural networks). We present an online tool which helps to select such operators and values in an automatic way, accomplishing with our recent technique for tuning this kind of fuzzy programs. Moreover, our experimental results reveal that our tool generates the choices that better fit user's preferences in a very efficient way and producing relevant improvements on tuned neural networks.
引用
收藏
页码:190 / 197
页数:8
相关论文
共 50 条
  • [21] Some novel fuzzy logic operators with applications in fuzzy neural networks
    Li, Mengyuan
    Zhang, Xiaohong
    Jiang, Haojie
    Liu, Jun
    INFORMATION SCIENCES, 2025, 702
  • [22] Fuzzy neural networks based on fuzzy logic algebras valued relations
    Tagliaferri, R
    Ciaramella, A
    Di Nola, A
    Belohlávek, R
    FUZZY PARTIAL DIFFERENTIAL EQUATIONS AND RELATIONAL EQUATIONS: RESERVOIR CHARACTERIZATION AND MODELING, 2004, 142 : 116 - 129
  • [23] FUZZY-LOGIC AND NEURAL NETWORKS - THEORY AND APPLICATIONS
    WANG, FY
    GENG, ZJ
    JAMSHIDI, M
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 1995, 3 (01) : 1 - 2
  • [24] Fuzzy logic systems are equivalent to feedforward neural networks
    Hongxing Li
    Science in China Series E: Technological Sciences, 2000, 43 : 42 - 54
  • [25] SPECIAL ISSUE ON FUZZY-LOGIC AND NEURAL NETWORKS
    BEZDEK, J
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05): : 641 - 642
  • [26] Implementation of fuzzy logic systems and neural networks in industry
    Du, TCT
    Wolfe, PM
    COMPUTERS IN INDUSTRY, 1997, 32 (03) : 261 - 272
  • [27] Experiences with fuzzy logic and neural networks in a control course
    Jurado, F
    Castro, M
    Carpio, J
    IEEE TRANSACTIONS ON EDUCATION, 2002, 45 (02) : 161 - 167
  • [28] Fuzzy logic systems are equivalent to feedforward neural networks
    李洪兴
    Science in China(Series E:Technological Sciences), 2000, (01) : 42 - 54
  • [29] Fuzzy logic systems are equivalent to feedforward neural networks
    Li, HX
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2000, 43 (01): : 42 - 54
  • [30] Experimental robotic excavation with fuzzy logic and neural networks
    Shi, XB
    Lever, PJA
    Wang, FY
    1996 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, PROCEEDINGS, VOLS 1-4, 1996, : 957 - 962