Nonparametric estimation of distributions with categorical and continuous data

被引:102
作者
Li, Q [1 ]
Racine, J
机构
[1] Texas A&M Univ, Dept Econ, College Stn, TX 77843 USA
[2] Syracuse Univ, Dept Econ, Syracuse, NY 13244 USA
关键词
discrete and continuous variables; density estimation; nonparametric smoothing; cross-validation; asymptotic normality;
D O I
10.1016/S0047-259X(02)00025-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the problem of estimating an unknown joint distribution which is defined over mixed discrete and continuous variables. A nonparametric kernel approach is proposed with smoothing parameters obtained from the cross-validated minimization of the estimator's integrated squared error. We derive the rate of convergence of the cross-validated smoothing parameters to their 'benchmark' optimal values, and we also establish the asymptotic normality of the resulting nonparametric kernel density estimator. Monte Carlo simulations illustrate that the proposed estimator performs substantially better than the conventional nonparametric frequency estimator in a range of settings. The simulations also demonstrate that the proposed approach does not suffer from known limitations of the likelihood cross-validation method which breaks down with commonly used kernels when the continuous variables are drawn from fat-tailed distributions. An empirical application demonstrates that the proposed method can yield superior predictions relative to commonly used parametric models. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:266 / 292
页数:27
相关论文
共 50 条
  • [41] Divisive Latent Class Modeling as a Density Estimation Method for Categorical Data
    Daniël W. van der Palm
    L. Andries van der Ark
    Jeroen K. Vermunt
    Journal of Classification, 2016, 33 : 52 - 72
  • [42] Divisive Latent Class Modeling as a Density Estimation Method for Categorical Data
    van der Palm, Daniel W.
    van der Ark, L. Andries
    Vermunt, Jeroen K.
    JOURNAL OF CLASSIFICATION, 2016, 33 (01) : 52 - 72
  • [43] Nonparametric regression with weakly dependent data: the discrete and continuous regressor case
    Li, Cong
    Ouyang, Desheng
    Racine, Jeffrey S.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (06) : 697 - 711
  • [44] A nonparametric inverse probability weighted estimation for functional data with missing response data at random
    Wang, Longbing
    Cao, Ruiyuan
    Du, Jiang
    Zhang, Zhongzhan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (04) : 537 - 546
  • [45] A nonparametric inverse probability weighted estimation for functional data with missing response data at random
    Longbing Wang
    Ruiyuan Cao
    Jiang Du
    Zhongzhan Zhang
    Journal of the Korean Statistical Society, 2019, 48 : 537 - 546
  • [46] An overview of nonparametric contributions to the problem of functional estimation from biased data
    José A. Cristóbal
    José T. Alcalá
    Test, 2001, 10 : 309 - 332
  • [47] Nonparametric quantile regression estimation for functional data with responses missing at random
    Xu, Dengke
    Du, Jiang
    METRIKA, 2020, 83 (08) : 977 - 990
  • [48] An overview of nonparametric contributions to the problem of functional estimation from biased data
    Cristóbal, JA
    Alcalá, JT
    TEST, 2001, 10 (02) : 309 - 332
  • [49] Nonparametric estimation for high-frequency data incorporating trading information
    Cui, Wenhao
    Hu, Jie
    Wang, Jiandong
    JOURNAL OF ECONOMETRICS, 2024, 240 (01)
  • [50] Nonparametric quantile regression estimation for functional data with responses missing at random
    Dengke Xu
    Jiang Du
    Metrika, 2020, 83 : 977 - 990