One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign

被引:11
作者
Kaufmann, Uriel [1 ]
Medri, Ivan [1 ]
机构
[1] Univ Nacl Cordoba, FaMAF, RA-5000 Cordoba, Argentina
关键词
One-dimensional singular problems; indefinite nonlinearities; p-Laplacian; positive solutions; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; CHANGING NONLINEARITIES; ELLIPTIC PROBLEMS; EXISTENCE; PRINCIPLES; OPERATORS; THEOREMS; EQUATION;
D O I
10.1515/anona-2015-0116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded open interval, let p > 1 and y > 0, and let m : Omega -> IR be a function that may change sign in Omega. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form (vertical bar u'vertical bar(p-2)u')' = m(x)u(-gamma) in Omega, u = 0 on partial derivative Omega. As a consequence we also derive existence results for other related nonlinearities.
引用
收藏
页码:251 / 259
页数:9
相关论文
共 25 条
[1]  
Agarwal RP, 2003, Z ANAL ANWEND, V22, P689
[2]   Existence theorems for the one-dimensional singular p -: Laplacian equation with sign changing nonlinearities [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (01) :15-38
[3]  
[Anonymous], CR ACAD SCI PARIS 1
[4]  
[Anonymous], 2008, OXFORD LECT SER MATH
[5]  
Biezuner Rodney Josue, 2011, Computational Methods in Applied Mathematics, V11, P129
[6]  
Chipot M, 2009, BIRKHAUSER ADV TEXTS, P3
[7]   A HOMOTOPIC DEFORMATION ALONG P OF A LERAY-SCHAUDER DEGREE RESULT AND EXISTENCE FOR (/U'/P-2U')'+F(T,U)=O, U(O)=U(T)=O, P-GREATER-THAN-1 [J].
DELPINO, M ;
ELGUETA, M ;
MANASEVICH, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 80 (01) :1-13
[8]   Maximum and comparison principles for operators involving the p-Laplacian [J].
Garcia-Melian, J ;
de Lis, JS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (01) :49-65
[9]  
GASINSKI L, 2006, SER MATH ANAL APPL, V9
[10]   Multi-parameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term [J].
Ghergu, M ;
Radulescu, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :61-83