On the nonvanishing of representation functions of some special sequences

被引:6
作者
Qu, Zhenhua [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Representation function; Partition; Sarkozy problem; ADDITIVE PROPERTIES; NATURAL-NUMBERS; PARTITIONS; SETS;
D O I
10.1016/j.disc.2014.11.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given positive integer N, and any coloring function c : N -> {0, 1} satisfying c(2k) = 1 - c(k), c(2k + 1) = c(k) for all k >= N, we show that for all n >= 20N, n has both a monochromatic representation and a multicolored representation, in other words, there exist x, y, u, v is an element of N, such that n = x+y = u+v, c(x) = c(y) and c(u) not equal c(v). Similar results are obtained for another kind of coloring function c : N -> {0, 1} satisfying c(2k) = c(k) and c(2k + 1) = 1 - c(k) for all k >= N. This answers a question of Y.-G. Chen on the values of representation functions. (C) 2014 Elsevier, B.V. All rights reserved.
引用
收藏
页码:571 / 575
页数:5
相关论文
共 7 条
[1]   On additive properties of two special sequences [J].
Chen, YG ;
Wang, B .
ACTA ARITHMETICA, 2003, 110 (03) :299-303
[2]   Partitions of natural numbers with the same representation functions [J].
Chen, Yong-Gao ;
Tang, Min .
JOURNAL OF NUMBER THEORY, 2009, 129 (11) :2689-2695
[3]   On the values of representation functions [J].
Chen YongGao .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (07) :1317-1331
[4]   Additive properties of certain sets [J].
Dombi, G .
ACTA ARITHMETICA, 2002, 103 (02) :137-146
[5]  
Lev VF, 2004, ELECTRON J COMB, V11
[6]  
Sandor C., 2004, INTEGERS, V4, pA18
[7]   Partitions of the set of natural numbers and their representation functions [J].
Tang, Min .
DISCRETE MATHEMATICS, 2008, 308 (12) :2614-2616