Measurements of gamma ray, cosmic muon and residual neutron background fluxes for rare event search experiments at an underground laboratory

被引:2
作者
Ghosh, Sayan [1 ]
Dutta, Shubham [1 ]
Mondal, Naba Kumar [1 ]
Saha, Satyajit [1 ]
机构
[1] CI Homi Bhabha Natl Inst, Saha Inst Nucl Phys, 1 AF Bidhan Nagar, Kolkata 700064, India
关键词
Cosmic muons; Radiogenic neutrons; Cosmogenic neutrons; Radiation background; Cosmic muon telescope; Neutron detector; PULSE-SHAPE DISCRIMINATION; CRYSTAL; ENERGY;
D O I
10.1016/j.astropartphys.2022.102700
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Ambient radiation background contributed by the penetrating cosmic ray particles and the radionuclides present in the rock materials have been measured at an underground laboratory at Jaduguda, Jharkhand, India, located inside a mine at 555 m depth. The laboratory is being set up to explore rare event search processes, such as direct dark matter search, neutrinoless double beta decay, axion search, supernova neutrino detection, etc., that require specific knowledge of the nature and extent of the radiation environment in order to assess the sensitivity reach and also to plan for its reduction for the targeted experiment. The gamma ray background, which is mostly contributed by the primordial radionuclides and their decay chain products, have been measured inside the laboratory and found to be dominated by rock radioactivity for E-r (SIC) 3 MeV. Shielding of these residual gamma rays for the experiment was also evaluated. The cosmic muon flux, measured inside the laboratory using large area plastic scintillator telescope, was found to be: (2.257 +/- 0.261 +/- 0.042) x 10(-7) cm(-2) s(-1), which agrees reasonably well with simulation results. The neutron background flux has been measured for the radiogenic neutrons and found to be: (1.61 +/- 0.03) x 10(-4) cm(-2) s(-1) for no threshold cut. Detailed GEANT4 simulation for the radiogenic neutrons and the cosmogenic neutrons have been carried out. Effects of multiple scattering of both the types of neutrons within the surrounding rock and the cavern walls were studied and the results for the radiogenic neutrons are found to be in reasonable agreement with experimental results. Neutron fluxes contributed by those neutrons of cosmogenic origin have been reported as function of the energy threshold.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] GEANT4-a simulation toolkit
    Agostinelli, S
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Arce, P
    Asai, M
    Axen, D
    Banerjee, S
    Barrand, G
    Behner, F
    Bellagamba, L
    Boudreau, J
    Broglia, L
    Brunengo, A
    Burkhardt, H
    Chauvie, S
    Chuma, J
    Chytracek, R
    Cooperman, G
    Cosmo, G
    Degtyarenko, P
    Dell'Acqua, A
    Depaola, G
    Dietrich, D
    Enami, R
    Feliciello, A
    Ferguson, C
    Fesefeldt, H
    Folger, G
    Foppiano, F
    Forti, A
    Garelli, S
    Giani, S
    Giannitrapani, R
    Gibin, D
    Cadenas, JJG
    González, I
    Abril, GG
    Greeniaus, G
    Greiner, W
    Grichine, V
    Grossheim, A
    Guatelli, S
    Gumplinger, P
    Hamatsu, R
    Hashimoto, K
    Hasui, H
    Heikkinen, A
    Howard, A
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) : 250 - 303
  • [2] Cosmogenic neutron production at the Sudbury Neutrino Observatory
    Aharmim, B.
    Ahmed, S. N.
    Anthony, A. E.
    Barros, N.
    Beier, E. W.
    Bellerive, A.
    Beltran, B.
    Bergevin, M.
    Biller, S. D.
    Bonventre, R.
    Boudjemline, K.
    Boulay, M. G.
    Cai, B.
    Callaghan, E. J.
    Caravaca, J.
    Chan, Y. D.
    Chauhan, D.
    Chen, M.
    Cleveland, B. T.
    Cox, G. A.
    Curley, R.
    Dai, X.
    Deng, H.
    Descamps, F. B.
    Detwiler, J. A.
    Doe, P. J.
    Doucas, G.
    Drouin, P. -L.
    Dunford, M.
    Elliott, S. R.
    Evans, H. C.
    Ewan, G. T.
    Farine, J.
    Fergani, H.
    Fleurot, F.
    Ford, R. J.
    Formaggio, J. A.
    Gagnon, N.
    Gilje, K.
    Goon, J. T. M.
    Graham, K.
    Guillian, E.
    Habib, S.
    Hahn, R. L.
    Hallin, A. L.
    Hallman, E. D.
    Harvey, P. J.
    Hazama, R.
    Heintzelman, W. J.
    Heise, J.
    [J]. PHYSICAL REVIEW D, 2019, 100 (11)
  • [3] Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the sudbury neutrino observatory
    Aharmim, B.
    Ahmed, S. N.
    Amsbaugh, J. F.
    Anthony, A. E.
    Banar, J.
    Barros, N.
    Beier, E. W.
    Bellerive, A.
    Beltran, B.
    Bergevin, M.
    Biller, S. D.
    Boudjemline, K.
    Boulay, M. G.
    Bowles, T. J.
    Browne, M. C.
    Bullard, T. V.
    Burritt, T. H.
    Cai, B.
    Chan, Y. D.
    Chauhan, D.
    Chen, M.
    Cleveland, B. T.
    Cox-Mobrand, G. A.
    Currat, C. A.
    Dai, X.
    Deng, H.
    Detwiler, J.
    DiMarco, M.
    Doe, P. J.
    Doucas, G.
    Drouin, P. -L.
    Duba, C. A.
    Duncan, F. A.
    Dunford, M.
    Earle, E. D.
    Elliott, S. R.
    Evans, H. C.
    Ewan, G. T.
    Farine, J.
    Fergani, H.
    Fleurot, F.
    Ford, R. J.
    Formaggio, J. A.
    Fowler, M. M.
    Gagnon, N.
    Germani, J. V.
    Goldschmidt, A.
    Goon, J. T. M.
    Graham, K.
    Guillian, E.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (11)
  • [4] Radiogenic and muon-induced backgrounds in the LUX dark matter detector
    Akerib, D. S.
    Araujo, H. M.
    Bai, X.
    Bailey, A. J.
    Balajthy, J.
    Bernard, E.
    Bernstein, A.
    Bradley, A.
    Byram, D.
    Cahn, S. B.
    Carmona-Benitez, M. C.
    Chan, C.
    Chapman, J. J.
    Chiller, A. A.
    Chiller, C.
    Coffey, T.
    Currie, A.
    de Viveiros, L.
    Dobi, A.
    Dobson, J.
    Druszkiewicz, E.
    Edwards, B.
    Faham, C. H.
    Fiorucci, S.
    Flores, C.
    Gaitskell, R. J.
    Gehman, V. M.
    Ghagi, C.
    Gibson, K. R.
    Gilchriese, M. G. D.
    Hall, C.
    Hertel, S. A.
    Horn, M.
    Huang, D. Q.
    Ihm, M.
    Jacobsen, R. G.
    Kazkaz, K.
    Knoche, R.
    Larsen, N. A.
    Lee, C.
    Lindote, A.
    Lopes, M. I.
    Malling, D. C.
    Mannino, R.
    McKinsey, D. N.
    Mei, D. -M.
    Mock, J.
    Moongweluwan, M.
    Morad, J.
    Murphy, A. Std.
    [J]. ASTROPARTICLE PHYSICS, 2015, 62 : 33 - 46
  • [5] [Anonymous], Google Earth Pro
  • [6] Arktis Radiation Detectors Limited Zurich Switzerland, 2017, ARKT S670E DET SER O
  • [7] Simulation of neutron background for a dark matter search experiment at JUSL
    Banik, S.
    Kashyap, V. K. S.
    Ghosh, S.
    Dutta, S.
    Mohanty, B.
    Meghna, K. K.
    Bhattacharjee, P.
    Saha, S.
    [J]. JOURNAL OF INSTRUMENTATION, 2021, 16 (06):
  • [8] WIMP dark matter direct-detection searches in noble gases
    Baudis, Laura
    [J]. PHYSICS OF THE DARK UNIVERSE, 2014, 4 : 50 - 59
  • [9] The FLUKA Code: Developments and Challenges for High Energy and Medical Applications
    Boehlen, T. T.
    Cerutti, F.
    Chin, M. P. W.
    Fosso, A.
    Ferrari, A.
    Ortega, P. G.
    Mairani, A.
    Sala, P. R.
    Smirnov, G.
    Vlachoudisl, V.
    [J]. NUCLEAR DATA SHEETS, 2014, 120 : 211 - 214
  • [10] Neutrinoless Double Beta Decay Experiments With TeO2 Low-Temperature Detectors
    Brofferio, Chiara
    Cremonesi, Oliviero
    Dell'Oro, Stefano
    [J]. FRONTIERS IN PHYSICS, 2019, 7 (JUN)