XNOR-BSNN: In-Memory Computing Model for Deep Binarized Spiking Neural Network

被引:1
作者
Nguyen, Van-Tinh [1 ]
Quang-Kien Trinh [2 ]
Zhang, Renyuan [1 ]
Nakashima, Yasuhiko [1 ]
机构
[1] NARA Inst Sci & Technol, Sch Informat Sci, Ikoma, Japan
[2] Le Quy Don Tech Univ, Dept Microelect & Microproc, Hanoi, Vietnam
来源
2021 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE BIG DATA AND INTELLIGENT SYSTEMS (HPBD&IS) | 2021年
关键词
In-memory computing; Binary Spiking Neural Network; residual connection;
D O I
10.1109/HPBDIS53214.2021.9658467
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a residual binarized spiking neural network (B-SNN) model suited for inmemory computing (IMC) implementation. While in most of the prior arts, due to the nature of spike represented unipolar format, the B-SNN were implemented using either complex or non-regular logic that is not suited for IMC and/or makes the network inflexible. In this work, we present a B-SNN model that permits the direct adoption of a unipolar format spike on the XNOR array, i.e., allows fully exploiting IMC's potential benefit based on the highly regular and simple array structure. Also, instead of indirectly taking the B-SNN model from the trained BNN, we propose a residual model for deep B-SNN networks. The system simulation shows that our trained network achieves reasonably good accuracy (59.11%) on CIFAR100 with very low inference latency (only 8 time-steps BSNN).
引用
收藏
页码:17 / 21
页数:5
相关论文
共 18 条
  • [1] An Efficient Heterogeneous Memristive XNOR for In-Memory Computing
    Abu Lebdeh, Muath
    Abunahla, Heba
    Mohammad, Baker
    Al-Qutayri, Mahmoud
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (09) : 2427 - 2437
  • [2] A 90nm 103.14 TOPS/W Binary-Weight Spiking Neural Network CMOS ASIC for Real-Time Object Classification
    Chuang, Po-Yao
    Tan, Pai-Yu
    Wu, Cheng-Wen
    Lu, Juin-Ming
    [J]. PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
  • [3] Convolutional networks for fast, energy-efficient neuromorphic computing
    Esser, Steven K.
    Merolla, Paul A.
    Arthur, John V.
    Cassidy, Andrew S.
    Appuswamy, Rathinakumar
    Andreopoulos, Alexander
    Berg, David J.
    McKinstry, Jeffrey L.
    Melano, Timothy
    Barch, Davis R.
    di Nolfo, Carmelo
    Datta, Pallab
    Amir, Arnon
    Taba, Brian
    Flickner, Myron D.
    Modha, Dharmendra S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) : 11441 - 11446
  • [4] Graca Y. K. M., 2020, ARXIV PREPRINT ARXIV, P35
  • [5] Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems
    Guo, Wenzhe
    Fouda, Mohammed E.
    Eltawil, Ahmed M.
    Salama, Khaled Nabil
    [J]. FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [6] Hubara I, 2018, J MACH LEARN RES, V18
  • [7] Kheradpisheh S.R., 2020, ARXIV PREPRINT ARXIV
  • [8] Krizhevsky A., 2009, .. Sci. Dep. Univ. Toronto
  • [9] Exploring the Connection Between Binary and Spiking Neural Networks
    Lu, Sen
    Sengupta, Abhronil
    [J]. FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [10] Pham T., 2021, 2021 IEEE INT S CIRC