A Key Verification Protocol for Quantum Key Distribution

被引:2
|
作者
Kurt, Gunes Karabulut [1 ]
Ozdemir, Enver [2 ]
Ozkirisci, Neslihan Aysen [3 ]
Topal, Ozan Alp [1 ]
机构
[1] Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey
[2] Istanbul Tech Univ, Informat Inst, TR-34469 Istanbul, Turkey
[3] Yildiz Tech Univ, Dept Math, TR-34220 Istanbul, Turkey
关键词
Protocols; Interpolation; Cryptography; Qubit; Complexity theory; Communication channels; Key verification; polynomial interpolation; quantum key distribution; secret sharing; CRYPTOGRAPHY; RECONCILIATION; SECURITY;
D O I
10.1109/ACCESS.2019.2943478
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sharing a secret key between two physically separated nodes, Alice and Bob, is possible through the use of quantum key distribution (QKD) techniques. In the presence of an eavesdropper, Alices key may not be identical with Bobs key, due to the characteristics of a quantum channel. To obtain identical keys at Alice and Bob, we propose a block-based key verification protocol that relies on Newtons polynomial interpolation. As the nodes solely share random numbers and indices of the removed blocks, no information is revealed about the secret message, at a cost of higher computational complexity. The error propagation through the key verification process is prevented by the characteristics of the proposed approach.
引用
收藏
页码:141386 / 141394
页数:9
相关论文
共 50 条
  • [21] Quantum Key Distribution Secured Optical Networks: A Survey
    Sharma, Purva
    Agrawal, Anuj
    Bhatia, Vimal
    Prakash, Shashi
    Mishra, Amit Kumar
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 : 2049 - 2083
  • [22] The Evolution of Quantum Key Distribution Networks: On the Road to the Qinternet
    Cao, Yuan
    Zhao, Yongli
    Wang, Qin
    Zhang, Jie
    Ng, Soon Xin
    Hanzo, Lajos
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (02): : 839 - 894
  • [23] LDPC error correction in the context of Quantum Key Distribution
    Nakassis, Anastase
    Mink, Alan
    QUANTUM INFORMATION AND COMPUTATION X, 2012, 8400
  • [24] Continuous variable quantum key distribution
    Li, Yong-Min
    Wang, Xu-Yang
    Bai, Zeng-Liang
    Liu, Wen-Yuan
    Yang, Shen-Shen
    Peng, Kun-Chi
    CHINESE PHYSICS B, 2017, 26 (04)
  • [25] An Overview of Postprocessing in Quantum Key Distribution
    Luo, Yi
    Cheng, Xi
    Mao, Hao-Kun
    Li, Qiong
    MATHEMATICS, 2024, 12 (14)
  • [26] Quantum Key Distribution: A Networking Perspective
    Mehic, Miralem
    Niemiec, Marcin
    Rass, Stefan
    Ma, Jiajun
    Peev, Momtchil
    Aguado, Alejandro
    Martin, Vicente
    Schauer, Stefan
    Poppe, Andreas
    Pacher, Christoph
    Voznak, Miroslav
    ACM COMPUTING SURVEYS, 2020, 53 (05)
  • [27] FINITE-KEY ANALYSIS FOR QUANTUM KEY DISTRIBUTION WITH DECOY STATES
    Song, Ting-Ting
    Zhang, Jie
    Qin, Su-Juan
    Gao, Fei
    Wen, Qiao-Yan
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (5-6) : 374 - 389
  • [28] Finite-key effects in multipartite quantum key distribution protocols
    Grasselli, Federico
    Kampermann, Hermann
    Bruss, Dagmar
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [29] Generalization of Quantum Key Distribution Protocol
    Khan, Muhammad Mubashir
    Xu, Jie
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2012, 12 (08): : 98 - 101
  • [30] Quantum Identity Authentication in the Counterfactual Quantum Key Distribution Protocol
    Liu, Bin
    Gao, Zhifeng
    Xiao, Di
    Huang, Wei
    Zhang, Zhiqing
    Xu, Bingjie
    ENTROPY, 2019, 21 (05)