Tailoring yolk-shell FeP@carbon nanoboxes with engineered void space for pseudocapacitance-boosted lithium storage

被引:86
作者
Wang, Qiong [1 ]
Wang, Boya [2 ]
Zhang, Zhi [3 ]
Zhang, Yin [1 ]
Peng, Jing [1 ]
Zhang, Yun [2 ]
Wu, Hao [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu, Sichuan, Peoples R China
[2] Sichuan Univ, Dept Adv Energy Mat, Chengdu, Sichuan, Peoples R China
[3] Huazhong Univ Sci & Technol, Ctr Nanoscale Characterizat & Devices, Wuhan Natl Lab Optoelect, Sch Phys, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE ANODE; REDUCED GRAPHENE OXIDE; SODIUM-ION BATTERIES; HIGH-CAPACITY; NANOPARTICLES; COMPOSITE; HYBRID; NANOCOMPOSITES; ELECTRODES; LITHIATION;
D O I
10.1039/c8qi00849c
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
As one kind of promising high-capacity anode material for lithium ion batteries (LIBs), iron phosphide (FeP) has recently attracted much attention owing to its high theoretical capacity. However, the FeP anode materials also suffer from the common problems of intrinsically poor electrical conductivity and drastic volume expansion. Here, we design and construct yolk-shell FeP@carbon (FeP@C) nanobox composites with void space by an efficient synthetic strategy of combining etching-in-boxes with phosphidation-in-boxes approach. Rational void space is engineered between the FeP cores and carbon shells in the yolk-shell structure, which offers a buffer zone for adapting the volume expansion of FeP core particles without breaking the protective carbon shells upon lithiation. Benefiting from their unique structural advantages, the as-built FeP@C nanoboxes manifest a superb rate capability with high specific capacities of 495.9 and 220.8 mA h g(-1) at 1.0 and 10.0 A g(-1), respectively. Quantitative kinetic analysis identifies that the high-rate performance mainly stems from the pseudocapacitance-boosted lithium storage contribution rendered by the yolk-shell nanobox structure. Moreover, the engineered void space in the FeP@C yolk-shell nanostructure also endows it with an excellent long-term and durable cycling stability (93.7% capacity retention after 600 cycles at 1.0 A g(-1)). This work sheds light on the rational design of nanostructured metal-phosphide-based anode materials for high performance LIBs.
引用
收藏
页码:2605 / 2614
页数:10
相关论文
共 58 条
[1]   FeP: Another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process [J].
Boyanov, S. ;
Bernardi, J. ;
Gillot, F. ;
Dupont, L. ;
Womes, M. ;
Tarascon, J. -M. ;
Monconduit, L. ;
Doublet, M. -L. .
CHEMISTRY OF MATERIALS, 2006, 18 (15) :3531-3538
[2]   Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives [J].
Carenco, Sophie ;
Portehault, David ;
Boissiere, Cedric ;
Mezailles, Nicolas ;
Sanchez, Clement .
CHEMICAL REVIEWS, 2013, 113 (10) :7981-8065
[3]   Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for High-Rate Full Sodium Ion Storage Device [J].
Chao, Dongliang ;
Lai, Chun-Han ;
Liang, Pei ;
Wei, Qiulong ;
Wang, Yue-Sheng ;
Zhu, Changrong ;
Deng, Gang ;
Doan-Nguyen, Vicky V. T. ;
Lin, Jianyi ;
Mai, Liqiang ;
Fan, Hong Jin ;
Dunn, Bruce ;
Shen, Ze Xiang .
ADVANCED ENERGY MATERIALS, 2018, 8 (16)
[4]   Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays [J].
Chao, Dongliang ;
Liang, Pei ;
Chen, Zhen ;
Bai, Linyi ;
Shen, He ;
Liu, Xiaoxu ;
Xia, Xinhui ;
Zhao, Yanli ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Shen, Ze Xiang .
ACS NANO, 2016, 10 (11) :10211-10219
[5]   Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance [J].
Chao, Dongliang ;
Zhu, Changrong ;
Yang, Peihua ;
Xia, Xinhui ;
Liu, Jilei ;
Wang, Jin ;
Fan, Xiaofeng ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Fan, Hong Jin ;
Shen, Ze Xiang .
NATURE COMMUNICATIONS, 2016, 7
[6]   Electrochemical Synthesis of Iron Phosphides as Anode Materials for Lithium Secondary Batteries [J].
Chun, Young-Min ;
Shin, Heon-Cheol .
ELECTROCHIMICA ACTA, 2016, 209 :369-378
[7]   Sulfur-carbon yolk-shell particle based 3D interconnected nanostructures as cathodes for rechargeable lithium-sulfur batteries [J].
Ding, Ning ;
Lum, Yanwei ;
Chen, Shaofeng ;
Chien, Sheau Wei ;
Hor, T. S. Andy ;
Liu, Zhaolin ;
Zong, Yun .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) :1853-1857
[8]   Air-Stable Porous Fe2N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life [J].
Dong, Yifan ;
Wang, Bingliang ;
Zhao, Kangning ;
Yu, Yanhao ;
Wang, Xudong ;
Mai, Liqiang ;
Jin, Song .
NANO LETTERS, 2017, 17 (09) :5740-5746
[9]   NiP3: a promising negative electrode for Li- and Na-ion batteries [J].
Fullenwarth, J. ;
Darwiche, A. ;
Soares, A. ;
Donnadieu, B. ;
Monconduit, L. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (07) :2050-2059
[10]   Well-dispersed and porous FeP@C nanoplates with stable and ultrafast lithium storage performance through conversion reaction mechanism [J].
Han, Fei ;
Zhang, Chengzhi ;
Yang, Jianxiao ;
Ma, Guozhi ;
He, Kejian ;
Li, Xuanke .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (33) :12781-12789