A Mixed-Signal Structured AdEx Neuron for Accelerated Neuromorphic Cores

被引:36
|
作者
Aamir, Syed Ahmed [1 ]
Mueller, Paul [1 ]
Kiene, Gerd [1 ]
Kriener, Laura [1 ]
Stradmann, Yannik [1 ]
Gruebl, Andreas [1 ]
Schemmel, Johannes [1 ]
Meier, Karlheinz [1 ]
机构
[1] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
基金
欧盟地平线“2020”;
关键词
65 nm CMOS; Analog integrated circuits; adaptation; AdEx; bursting; dendrites; exponential; integrate-and-fire; leaky; LIF; multi-compartment; neuromorphic; neuron; NMDA; spiking; SPIKING NEURONS; MODEL; SYNAPSES; CIRCUIT; ARRAY; BACKPROPAGATION; DENDRITES; DIRECTION; DYNAMICS; CELLS;
D O I
10.1109/TBCAS.2018.2848203
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Here, we describe a multicompartment neuron circuit based on the adaptive-exponential I&F (AdEx) model, developed for the second-generation BrainScaleS hardware. Based on an existing modular leaky integrate-and-fire (LIF) architecture designed in 65-nm CMOS, the circuit features exponential spike generation, neuronal adaptation, intercompartmental connections as well as a conductance-based reset. The design reproduces a diverse set of firing patterns observed in cortical pyramidal neurons. Further, it enables the emulation of sodium and calcium spikes, as well as N-methyl-D-aspartate plateau potentials known from apical and thin dendrites. We characterize the AdEx circuit extensions and exemplify how the interplay between passive and nonlinear active signal processing enhances the computational capabilities of single (but structured) on-chip neurons.
引用
收藏
页码:1027 / 1037
页数:11
相关论文
共 44 条
  • [1] From LIF to AdEx Neuron Models: Accelerated Analog 65 nm CMOS Implementation
    Aamir, Syed Ahmed
    Mueller, Paul
    Kriener, Laura
    Kiene, Gerd
    Schemmel, Johannes
    Meier, Karlheinz
    2017 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2017,
  • [2] An Accelerated LIF Neuronal Network Array for a Large-Scale Mixed-Signal Neuromorphic Architecture
    Aamir, Syed Ahmed
    Stradmann, Yannik
    Mueller, Paul
    Pehle, Christian
    Hartel, Andreas
    Gruebl, Andreas
    Schemmel, Johannes
    Meier, Karlheinz
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (12) : 4299 - 4312
  • [3] BrainFreeze: Expanding the Capabilities of Neuromorphic Systems Using Mixed-Signal Superconducting Electronics
    Tschirhart, Paul
    Segall, Ken
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [4] Mixed-Signal Neuromorphic Computing Circuits Using Hybrid CMOS-RRAM Integration
    Saxena, Vishal
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (02) : 581 - 586
  • [5] Energy-Efficient CMOS Memristive Synapses for Mixed-Signal Neuromorphic System-on-a-Chip
    Saxena, Vishal
    Wu, Xinyu
    Zhu, Kehan
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [6] Brain-inspired methods for achieving robust computation in heterogeneous mixed-signal neuromorphic processing systems
    Zendrikov, Dmitrii
    Solinas, Sergio
    Indiveri, Giacomo
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2023, 3 (03):
  • [7] Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System
    Milde, Moritz B.
    Blum, Hermann
    Dietmueller, Alexander
    Sumislawska, Dora
    Conradt, Joerg
    Indiveri, Giacomo
    Sandamirskaya, Yulia
    FRONTIERS IN NEUROROBOTICS, 2017, 11
  • [8] Analog- and Mixed-Signal Fabrics
    Kemerling, James C.
    Greenwell, Robert
    Bharath, Bhaskar
    PROCEEDINGS OF THE IEEE, 2015, 103 (07) : 1087 - 1101
  • [9] Ultra-Low-Energy Mixed-Signal IC Implementing Encoded Neural Networks
    Larras, Benoit
    Lahuec, Cyril
    Seguin, Fabrice
    Arzel, Matthieu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2016, 63 (11) : 1974 - 1985
  • [10] Synthetic mixed-signal computation in living cells
    Rubens, Jacob R.
    Selvaggio, Gianluca
    Lu, Timothy K.
    NATURE COMMUNICATIONS, 2016, 7