Risk-Averse Stochastic Convex Bandit

被引:0
|
作者
Cardoso, Adrian Rivera [1 ]
Xu, Huan [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89 | 2019年 / 89卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motivated by applications in clinical trials and finance, we study the problem of online convex optimization (with bandit feedback) where the decision maker is risk-averse. We provide two algorithms to solve this problem. The first one is a descent-type algorithm which is easy to implement. The second algorithm, which combines the ellipsoid method and a center point device, achieves (almost) optimal regret bounds with respect to the number of rounds. To the best of our knowledge this is the first attempt to address risk-aversion in the online convex bandit problem.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 50 条
  • [31] Risk-averse stochastic unit commitment with incomplete information
    Jiang, Ruiwei
    Guan, Yongpei
    Watson, Jean-Paul
    IIE TRANSACTIONS, 2016, 48 (09) : 838 - 854
  • [32] Martingale characterizations of risk-averse stochastic optimization problems
    Alois Pichler
    Ruben Schlotter
    Mathematical Programming, 2020, 181 : 377 - 403
  • [33] A Note on Stability for Risk-Averse Stochastic Complementarity Problems
    Johanna Burtscheidt
    Matthias Claus
    Journal of Optimization Theory and Applications, 2017, 172 : 298 - 308
  • [34] Risk-Averse No-Regret Learning in Online Convex Games
    Wang, Zifan
    Shen, Yi
    Zavlanos, Michael M.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [35] CONVERGENCE ANALYSIS OF SAMPLING-BASED DECOMPOSITION METHODS FOR RISK-AVERSE MULTISTAGE STOCHASTIC CONVEX PROGRAMS
    Guigues, Vincent
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (04) : 2468 - 2494
  • [36] Risk-averse governments
    Paul G. Harris
    Nature Climate Change, 2014, 4 : 245 - 246
  • [37] Mission: Risk-Averse
    Matson, John
    SCIENTIFIC AMERICAN, 2013, 308 (03) : 88 - 88
  • [38] Risk-averse multistage stochastic programs with expected conditional risk measures
    Khatami, Maryam
    Silva, Thuener
    Pagnoncelli, Bernardo K.
    Ntaimo, Lewis
    COMPUTERS & OPERATIONS RESEARCH, 2024, 172
  • [39] Risk-Averse Stochastic Programming: Time Consistency and Optimal Stopping
    Pichler, Alois
    Liu, Rui Peng
    Shapiro, Alexander
    OPERATIONS RESEARCH, 2022, 70 (04) : 2439 - 2455
  • [40] An approximation scheme for a class of risk-averse stochastic equilibrium problems
    Juan Pablo Luna
    Claudia Sagastizábal
    Mikhail Solodov
    Mathematical Programming, 2016, 157 : 451 - 481