Risk-Averse Stochastic Convex Bandit

被引:0
|
作者
Cardoso, Adrian Rivera [1 ]
Xu, Huan [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89 | 2019年 / 89卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motivated by applications in clinical trials and finance, we study the problem of online convex optimization (with bandit feedback) where the decision maker is risk-averse. We provide two algorithms to solve this problem. The first one is a descent-type algorithm which is easy to implement. The second algorithm, which combines the ellipsoid method and a center point device, achieves (almost) optimal regret bounds with respect to the number of rounds. To the best of our knowledge this is the first attempt to address risk-aversion in the online convex bandit problem.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 50 条
  • [1] Risk-Averse Allocation Indices for Multiarmed Bandit Problem
    Malekipirbazari, Milad
    Cavus, Ozlem
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (11) : 5522 - 5529
  • [2] Risk-averse stochastic path detection
    Collado, Ricardo
    Meisel, Stephan
    Priekule, Laura
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 260 (01) : 195 - 211
  • [3] Risk-Averse Trees for Learning from Logged Bandit Feedback
    Trovo, Francesco
    Paladino, Stefano
    Simone, Paolo
    Restelli, Marcello
    Gatti, Nicola
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 976 - 983
  • [4] Multistep stochastic mirror descent for risk-averse convex stochastic programs based on extended polyhedral risk measures
    Guigues, Vincent
    MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) : 169 - 212
  • [5] Multistep stochastic mirror descent for risk-averse convex stochastic programs based on extended polyhedral risk measures
    Vincent Guigues
    Mathematical Programming, 2017, 163 : 169 - 212
  • [6] Structure of risk-averse multistage stochastic programs
    Dupacova, Jitka
    Kozmik, Vaclav
    OR SPECTRUM, 2015, 37 (03) : 559 - 582
  • [7] Adaptive Sampling for Stochastic Risk-Averse Learning
    Curi, Sebastian
    Levy, Kfir Y.
    Jegelka, Stefanie
    Krause, Andreas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [8] The Risk-Averse Static Stochastic Knapsack Problem
    Merzifonluoglu, Yasemin
    Geunes, Joseph
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (03) : 931 - 948
  • [9] Approximation Algorithms for Stochastic and Risk-Averse Optimization
    Srinivasan, Aravind
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 1305 - 1313
  • [10] APPROXIMATION ALGORITHMS FOR STOCHASTIC AND RISK-AVERSE OPTIMIZATION
    Byrka, Jaroslaw
    Srinivasan, Aravind
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) : 44 - 63