Bio-Inspired Binary Bees Algorithm for a Two-Level Distribution Optimisation Problem

被引:5
|
作者
Xu, Shuo [1 ,2 ]
Ji, Ze [3 ]
Pham, Duc Truong [2 ]
Yu, Fan [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[2] Cardiff Univ, Mfg Engn Ctr, Cardiff CF24 3AA, S Glam, Wales
[3] Univ Hertfordshire, Sch Comp Sci, Hatfield AL10 9AB, Herts, England
关键词
Binary Bees Algorithm; bioinspiration; two-level distribution; combinatorial optimisation; multiobjectives; multiconstraints;
D O I
10.1016/S1672-6529(09)60205-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two uncoupleable distributions, assigning missions to robots and allocating robots to home stations, accompany the use of mobile service robots in hospitals. In the given problem, two workload-related objectives and five groups of constraints are proposed. A bio-mimicked Binary Bees Algorithm (BBA) is introduced to solve this multiobjective multiconstraint combinatorial optimisation problem, in which constraint handling technique (Multiobjective Transformation, MOT), multiobjective evaluation method (nondominance selection), global search strategy (stochastic search in the variable space), local search strategy (Hamming neighbourhood exploitation), and post-processing means (feasibility selection) are the main issues. The BBA is then demonstrated with a case study, presenting the execution process of the algorithm, and also explaining the change of elite number in evolutionary process. Its optimisation result provides a group of feasible nondominated two-level distribution schemes.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 50 条
  • [2] Bio-Inspired Binary Bees Algorithm for a Two-Level Distribution Optimisation Problem
    Shuo Xu
    Ze Ji
    Duc Troung Pham
    Fan Yu
    Journal of Bionic Engineering, 2010, 7 : 161 - 167
  • [3] A bio-inspired evolutionary algorithm: allostatic optimisation
    Osuna-Enciso, Valentin
    Cuevas, Erik
    Oliva, Diego
    Sossa, Humberto
    Perez-Cisneros, Marco
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2016, 8 (03) : 154 - 169
  • [4] Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems
    Wang, Gai-Ge
    Deb, Suash
    Coelho, Leandro dos Santos
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 12 (01) : 1 - 22
  • [5] A new bio-inspired optimisation algorithm: Bird Swarm Algorithm
    Meng, Xian-Bing
    Gao, X. Z.
    Lu, Lihua
    Liu, Yu
    Zhang, Hengzhen
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2016, 28 (04) : 673 - 687
  • [6] Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm for global optimisation problems
    Wang G.-G.
    Deb S.
    Dos Santos Coelho L.
    Wang, Gai-Ge (gaigewang@163.com), 2018, Inderscience Enterprises Ltd. (12) : 1 - 22
  • [7] An Intelligent Bio-Inspired Algorithm for the Faculty Scheduling Problem
    Al-Negheimish, Sarah
    Alnuhait, Fai
    Albrahim, Hawazen
    Al-Mogherah, Sarah
    Alrajhi, Maha
    Hosny, Manar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (05) : 151 - 159
  • [8] A bio-inspired optimization algorithm for the maximum flow problem
    Cai, Xi
    ICIC Express Letters, 2015, 9 (11): : 3031 - 3038
  • [9] Application of bio-inspired algorithm to the problem of integer factorisation
    Yampolskiy, Roman V.
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (02) : 115 - 123
  • [10] FUZZY CONTROLLED COOPERATIVE BIO-INSPIRED ALGORITHM FOR BINARY OPTIMIZATION
    Akhmedova, Shakhnaz
    Stanovov, Vladimir
    Semenkin, Eugene
    INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2018, 10 (02): : 69 - 78