Characterization of the interface between gamma and epsilon subunits of Escherichia coli F-1-ATPase

被引:83
作者
Tang, CL [1 ]
Capaldi, RA [1 ]
机构
[1] UNIV OREGON,INST MOLEC BIOL,EUGENE,OR 97403
关键词
D O I
10.1074/jbc.271.6.3018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The interaction faces of the gamma and epsilon subunits in the Escherichia coli F-1-ATPase have been explored by a combination of cross-linking and chemical modification experiments using several mutant epsilon subunits as follows: epsilon S10C, epsilon H38C, epsilon T43C, epsilon S65C, epsilon S108C, and epsilon M138C, along with a mutant of the gamma subunit, gamma T106C. The replacement of Ser-10 by a Cys or Met-138 by a Cys reduced the inhibition of ECF(1) by the epsilon subunit, while the mutation S65C increased this inhibitory effect. Modification of the Cys at position 10 with N-ethylmaleimide or fluoroscein maleimide further reduced the binding affinity of, and the maximal inhibition by, the epsilon subunit. Similar chemical modification of the Cys at position 43 of the epsilon subunit (in the mutant epsilon T43C) and a Cys at position 106 of the gamma subunit (gamma T106C) also affected the inhibition of ECF(1) by the epsilon subunit. The various epsilon subunit mutants were reacted with TFPAM3, and the site(s) of cross-linking within the ECF(1) complex was determined. Previous studies have shown cross-linking from the Cys at positions 10 and 38 with the gamma subunit and from a Cys at position 108 to an alpha subunit (Aggeler, R., Chicas-Cruz, K., Cai, S. X., Keana, J. F. W., and Capaldi, R. A. (1992) Biochemistry 31, 2956-2961; Aggeler, R., Weinreich, F., and Capaldi, R. A. (1995) Biochim. Biophys. Acta 1230, 62-68). Here, cross-linking was found from a Cys at position 43 to the gamma subunit and from the Cys at position 138 to a beta subunit. The site of cross-linking from Cys-10 of epsilon to the gamma subunit was localized by peptide mapping to a region of the gamma subunit between residues 222 and 242. Cross-linking from a Cys at position 38 and at position 43 was with the C-terminal part of the gamma subunit, between residues 202 and 286. ECF(1) treated with trypsin at pH 7.0 still binds purified epsilon subunit, while enzyme treated with the protease at pH 8.0 does not. This identifies sites around residue 70 and/or between 202 and 212 of the gamma subunit as involved in epsilon subunit binding.
引用
收藏
页码:3018 / 3024
页数:7
相关论文
共 36 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]   MONOCLONAL-ANTIBODY MODIFICATION OF THE ATPASE ACTIVITY OF ESCHERICHIA-COLI F1 ATPASE [J].
AGGELER, R ;
MENDELHARTVIG, J ;
CAPALDI, RA .
BIOCHEMISTRY, 1990, 29 (45) :10387-10393
[3]  
AGGELER R, 1993, J BIOL CHEM, V268, P20831
[4]  
AGGELER R, 1992, J BIOL CHEM, V267, P21355
[5]   DISULFIDE BOND FORMATION BETWEEN THE COOH-TERMINAL DOMAIN OF THE BETA-SUBUNITS AND THE GAMMA-SUBUNITS AND EPSILON-SUBUNITS OF THE ESCHERICHIA-COLI F1-ATPASE - STRUCTURAL IMPLICATIONS AND FUNCTIONAL CONSEQUENCES [J].
AGGELER, R ;
HAUGHTON, MA ;
CAPALDI, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (16) :9185-9191
[6]   INTRODUCTION OF REACTIVE CYSTEINE RESIDUES IN THE EPSILON-SUBUNIT OF ESCHERICHIA-COLI F1 ATPASE, MODIFICATION OF THESE SITES WITH TETRAFLUOROPHENYL AZIDE MALEIMIDES, AND EXAMINATION OF CHANGES IN THE BINDING OF THE EPSILON-SUBUNIT WHEN DIFFERENT NUCLEOTIDES ARE IN CATALYTIC SITES [J].
AGGELER, R ;
CHICASCRUZ, K ;
CAI, SX ;
KEANA, JFW ;
CAPALDI, RA .
BIOCHEMISTRY, 1992, 31 (11) :2956-2961
[7]   ARRANGEMENT OF THE EPSILON-SUBUNIT IN THE ESCHERICHIA-COLI ATP SYNTHASE FROM THE REACTIVITY OF CYSTEINE RESIDUES INTRODUCED AT DIFFERENT POSITIONS IN THIS SUBUNIT [J].
AGGELER, R ;
WEINREICH, F ;
CAPALDI, RA .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1995, 1230 (1-2) :62-68
[8]   THE BINDING CHANGE MECHANISM FOR ATP SYNTHASE - SOME PROBABILITIES AND POSSIBILITIES [J].
BOYER, PD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1140 (03) :215-250
[9]   COUPLING BETWEEN CATALYTIC SITES AND THE PROTON CHANNEL IN F1F0-TYPE ATPASES [J].
CAPALDI, RA ;
AGGELER, R ;
TURINA, P ;
WILKENS, S .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (07) :284-289
[10]  
Chou P Y, 1978, Adv Enzymol Relat Areas Mol Biol, V47, P45