Enhancing Li-Ion Transport in Solid Electrolytes by Confined Water

被引:4
|
作者
Li, Yutong [1 ,2 ]
Wang, Shitong [3 ,4 ]
Xiao, Zunqiu [1 ]
Leng, Jin [1 ]
Zhang, Zhongtai [1 ]
Gao, Tao [3 ]
Tang, Zilong [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] China Univ Petr East China, Coll New Energy, Qingdao 266580, Peoples R China
[3] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA
[4] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
中国国家自然科学基金;
关键词
conductivity; confined water; Li-ion batteries; solid electrolytes; stability; HYDROXYL-GROUPS; DENSITY; DESORPTION; STABILITY; FLUIDS; GEL;
D O I
10.1002/smll.202201094
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing new oxide solid electrolytes with fast Li-ion transport and high stability is an important step to realize high-performance solid-state Li-ion batteries. Hydrate materials containing confined water widely exist in nature or can be easily synthesized. However, they have seldom been explored as Li-ion solid electrolytes due to the stereotype that the presence of water limits the electrochemical stability window of a solid electrolyte. In this work, it is demonstrated that confined water can enhance Li-ion transport while not compromising the stability window of solid electrolytes using Li-H-Ti-O quaternary compounds as an example system. Three Li-H-Ti-O quaternary compounds containing different amounts of confined water are synthesized, and their ionic conductivity and electrochemical stability are compared. The compound containing structural pseudo-water is demonstrated to have an ionic conductivity that is 2-3 order of magnitude higher than the water-free Li4Ti5O12 and similar stability window. A solid-state battery is made with this new compound as the solid electrolyte, and good rate and cycling performance are achieved, which demonstrates the promise of using such confined-water-containing compounds as Li-ion solid electrolytes. The knowledge and insights gained in this work open a new direction for designing solid electrolytes for future solid-state Li-ion batteries. Broadly, by confining water into solid crystal structures, new design freedoms for tailing the properties of ceramic materials are introduced, which creates new opportunities in designing novel materials to address critical problems in various engineering fields.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Unraveling the Enhancement of Confined Water on the Li-Ion Transport of Solid Electrolytes
    Xiao, Zunqiu
    Li, Yutong
    Leng, Jin
    Xiang, Kejia
    Wei, Wei
    Wang, Huaying
    Hong, Zijian
    Zhang, Zhongtai
    Wang, Shitong
    Tang, Zilong
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (03)
  • [2] Improving Li-ion interfacial transport in hybrid solid electrolytes
    Ming Liu
    Shengnan Zhang
    Ernst R. H. van Eck
    Chao Wang
    Swapna Ganapathy
    Marnix Wagemaker
    Nature Nanotechnology, 2022, 17 : 959 - 967
  • [3] Improving Li-ion interfacial transport in hybrid solid electrolytes
    Liu, Ming
    Zhang, Shengnan
    van Eck, Ernst R. H.
    Wang, Chao
    Ganapathy, Swapna
    Wagemaker, Marnix
    NATURE NANOTECHNOLOGY, 2022, 17 (09) : 959 - +
  • [4] Electrolytes for Li-ion transport - Review
    Marcinek, M.
    Syzdek, J.
    Marczewski, M.
    Piszcz, M.
    Niedzicki, L.
    Kalita, M.
    Plewa-Marczewska, A.
    Bitner, A.
    Wieczorek, P.
    Trzeciak, T.
    Kasprzyk, M.
    Lezak, P.
    Zukowska, Z.
    Zalewska, A.
    Wieczorek, W.
    SOLID STATE IONICS, 2015, 276 : 107 - 126
  • [5] A strategy for enhancing Li-ion transport in quasi-solid polymer electrolytes using vinylene carbonate
    Cao, Kai
    Zhao, Yong
    Sun, Ling
    Hu, Zhengguang
    Wang, Li
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 688 : 225 - 232
  • [6] The Effects of Constriction Factor and Geometric Tortuosity on Li-Ion Transport in Porous Solid-State Li-Ion Electrolytes
    Hamann, Tanner
    Zhang, Lei
    Gong, Yunhui
    Godbey, Griffin
    Gritton, Jack
    McOwen, Dennis
    Hitz, Gregory
    Wachsman, Eric
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (14)
  • [7] Dielectric relaxation spectroscopy for the characterization of ion transport in solid polymer electrolytes in Li-ion cells
    Kumbhakar, Kajal
    Pham, Thuy Duong
    Lee, Kyung-Koo
    Kwak, Kyungwon
    Cho, Minhaeng
    ELECTROCHIMICA ACTA, 2023, 462
  • [8] Li-ion conduction mechanisms in solid electrolytes for solid state battery
    Santosh, K. C.
    Longo, Roberto C.
    Wang, Weichao
    Xiong, Ka
    Cho, Kyeongjae
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [9] Solid electrolytes for Li-ion batteries via machine learning
    Pereznieto, Santiago
    Jaafreh, Russlan
    Kim, Jung-gu
    Hamad, Kotiba
    MATERIALS LETTERS, 2023, 337
  • [10] Perovskite-type Li-ion solid electrolytes: a review
    Lu, Jiayao
    Li, Yin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (08) : 9736 - 9754