The bias reduction in density estimation using a geometric extrapolated kernel estimator

被引:1
作者
Salehi, Reza [1 ]
Shadrokh, Ali [1 ]
机构
[1] Payame Noor Univ, Dept Stat, POB 19395-4697, Tehran, Iran
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2018年 / 47卷 / 04期
关键词
Kernel density estimation; Bias reduction; Smoothing parameter; Geometric extrapolation; CONVERGENCE; RATES;
D O I
10.15672/HJMS.201614922002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the nonparametric methods to estimate the probability density is kernel method. In this paper, kernel density estimation methods including the naive kernel (NK) estimator and geometric extrapolation based kernel (GEBK) method are introduced and discussed. Theoretical properties, including the selection of smoothing parameter, the accuracy of resultant estimators using Monte Carlo simulation are studied. The results show that the amount of bias in the proposed geometric extrapolation based kernel estimator significantly decreases.
引用
收藏
页码:1003 / 1021
页数:19
相关论文
共 50 条