A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian estimates

被引:45
作者
Song, Liang [1 ]
Yan, Lixin [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
Hardy spaces; Atomic decomposition; The nontangential maximal functions; Nonnegative self-adjoint operators; Heat semigroup; Gaussian estimates; L-P; DUALITY;
D O I
10.1016/j.aim.2015.09.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a nonnegative, self-adjoint operator satisfying Gaussian estimates on L-2 (R-n). In this article we give an atomic decomposition for the Hardy spaces H-L,max(p) (R-n) in terms of the nontangential maximal functions associated with the heat semigroup of L, and this leads eventually to characterizations of Hardy spaces associated to L, via atomic decomposition or the nontangential maximal functions. The proof is based on a modification of a technique due to A. Calderon [6]. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:463 / 484
页数:22
相关论文
共 28 条
[1]  
[Anonymous], THEORY HP SPACES
[2]  
Auscher P., 2007, AM MATH SOC, V186
[3]  
Auscher P., 2005, BOUNDEDNESS BA UNPUB
[4]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[5]   New abstract Hardy spaces [J].
Bernicot, Frederic ;
Zhao, Jiman .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (07) :1761-1796
[6]   Weighted Lp estimates for powers of selfadjoint operators [J].
Cacciafesta, Federico ;
D'Ancona, Piero .
ADVANCES IN MATHEMATICS, 2012, 229 (01) :501-530
[7]   ATOMIC DECOMPOSITION OF DISTRIBUTIONS IN PARABOLIC HP SPACES [J].
CALDERON, AP .
ADVANCES IN MATHEMATICS, 1977, 25 (03) :216-225
[8]   PARABOLIC MAXIMAL FUNCTIONS ASSOCIATED WITH A DISTRIBUTION [J].
CALDERON, AP ;
TORCHINSKY, A .
ADVANCES IN MATHEMATICS, 1975, 16 (01) :1-64
[9]  
COIFMAN RR, 1974, STUD MATH, V51, P269
[10]   Gaussian heat kernel upper bounds via the Phragmen-Lindelof theorem [J].
Coulhon, Thierry ;
Sikora, Adam .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 :507-544