Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer

被引:38
|
作者
Kwon, Min-Seok [1 ]
Kim, Yongkang [2 ]
Lee, Seungyeoun [3 ]
Namkung, Junghyun [4 ]
Yun, Taegyun [4 ]
Yi, Sung Gon [4 ]
Han, Sangjo [4 ]
Kang, Meejoo [5 ]
Kim, Sun Whe [5 ]
Jang, Jin-Young [5 ]
Park, Taesung [1 ,2 ]
机构
[1] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
[2] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[3] Sejong Univ, Dept Math & Stat, Seoul, South Korea
[4] SK Telecom Co, New Business Div, IVD Business Unit, Immunodiagnost R&d Team, Songnam, South Korea
[5] Seoul Natl Univ Hosp, Dept Surg, Seoul 110744, South Korea
来源
BMC GENOMICS | 2015年 / 16卷
基金
新加坡国家研究基金会;
关键词
GENE-EXPRESSION; MICRORNAS; PROLIFERATION; STRATEGIES; PATHWAYS; CELLS;
D O I
10.1186/1471-2164-16-S9-S4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: microRNA (miRNA) expression plays an influential role in cancer classification and malignancy, and miRNAs are feasible as alternative diagnostic markers for pancreatic cancer, a highly aggressive neoplasm with silent early symptoms, high metastatic potential, and resistance to conventional therapies. Methods: In this study, we evaluated the benefits of multi-omics data analysis by integrating miRNA and mRNA expression data in pancreatic cancer. Using support vector machine (SVM) modelling and leave-one-out cross validation (LOOCV), we evaluated the diagnostic performance of single-or multi-markers based on miRNA and mRNA expression profiles from 104 PDAC tissues and 17 benign pancreatic tissues. For selecting even more reliable and robust markers, we performed validation by independent datasets from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) data depositories. For validation, miRNA activity was estimated by miRNA-target gene interaction and mRNA expression datasets in pancreatic cancer. Results: Using a comprehensive identification approach, we successfully identified 705 multi-markers having powerful diagnostic performance for PDAC. In addition, these marker candidates annotated with cancer pathways using gene ontology analysis. Conclusions: Our prediction models have strong potential for the diagnosis of pancreatic cancer.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Identifying individualized risk subpathways reveals pan-cancer molecular classification based on multi-omics data
    Xu, Yanjun
    Wang, Jingwen
    Li, Feng
    Zhang, Chunlong
    Zheng, Xuan
    Cao, Yang
    Shang, Desi
    Hu, Congxue
    Xu, Yingqi
    Mi, Wanqi
    Li, Xia
    Cao, Yan
    Zhang, Yunpeng
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 838 - 849
  • [22] Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective
    O'Connor, Lance M.
    O'Connor, Blake A.
    Bin Lim, Su
    Zeng, Jialiu
    Lo, Chih Hung
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2023, 13 (08) : 836 - 850
  • [23] Bioinformatics analysis of multi-omics data identifying molecular biomarker candidates and epigenetically regulatory targets associated with retinoblastoma
    Zeng, Yuyang
    He, Tao
    Liu, Juejun
    Li, Zongyuan
    Xie, Feijia
    Chen, Changzheng
    Xing, Yiqiao
    MEDICINE, 2020, 99 (47)
  • [24] Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering
    Crippa, Valentina
    Malighetti, Federica
    Villa, Matteo
    Graudenzi, Alex
    Piazza, Rocco
    Mologni, Luca
    Ramazzotti, Daniele
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 162
  • [25] Integrative Network Analysis of Multi-Omics Data in the Link between Plasma Carotenoid Concentrations and Lipid Profile
    Tremblay, Benedicte L.
    Guenard, Frederic
    Lamarche, Benoit
    Perusse, Louis
    Vohl, Marie-Claude
    LIFESTYLE GENOMICS, 2020, 13 (01) : 11 - 19
  • [26] Multi-Omics Integrative Analysis of Lung Adenocarcinoma: An in silico Profiling for Precise Medicine
    Ruan, Xinjia
    Ye, Yuqing
    Cheng, Wenxuan
    Xu, Li
    Huang, Mengjia
    Chen, Yi
    Zhu, Junkai
    Lu, Xiaofan
    Yan, Fangrong
    FRONTIERS IN MEDICINE, 2022, 9
  • [27] Identifying driver modules based on multi-omics biological networks in prostate cancer
    Chen, Zhongli
    Liang, Biting
    Wu, Yingfu
    Zhou, Haoru
    Wang, Yuchen
    Wu, Hao
    IET SYSTEMS BIOLOGY, 2022, 16 (06) : 187 - 200
  • [28] An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk
    Wu, Lang
    Yang, Yaohua
    Guo, Xingyi
    Shu, Xiao-Ou
    Cai, Qiuyin
    Shu, Xiang
    Li, Bingshan
    Tao, Ran
    Wu, Chong
    Nikas, Jason B.
    Sun, Yanfa
    Zhu, Jingjing
    Roobol, Monique J.
    Giles, Graham G.
    Brenner, Hermann
    John, Esther M.
    Clements, Judith
    Grindedal, Eli Marie
    Park, Jong Y.
    Stanford, Janet L.
    Kote-Jarai, Zsofia
    Haiman, Christopher A.
    Eeles, Rosalind A.
    Zheng, Wei
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [29] Multi-omics analysis of aggregative multicellularity
    Edelbroek, Bart
    Westholm, Jakub Orzechowski
    Bergquist, Jonas
    Soderbom, Fredrik
    ISCIENCE, 2024, 27 (09)
  • [30] Multi-omics data integration and modeling unravels new mechanisms for pancreatic cancer and improves prognostic prediction
    Fraunhoffer, Nicolas A.
    Abuelafia, Analia Meilerman
    Bigonnet, Martin
    Gayet, Odile
    Roques, Julie
    Nicolle, Remy
    Lomberk, Gwen
    Urrutia, Raul
    Dusetti, Nelson
    Iovanna, Juan
    NPJ PRECISION ONCOLOGY, 2022, 6 (01)