Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer

被引:38
|
作者
Kwon, Min-Seok [1 ]
Kim, Yongkang [2 ]
Lee, Seungyeoun [3 ]
Namkung, Junghyun [4 ]
Yun, Taegyun [4 ]
Yi, Sung Gon [4 ]
Han, Sangjo [4 ]
Kang, Meejoo [5 ]
Kim, Sun Whe [5 ]
Jang, Jin-Young [5 ]
Park, Taesung [1 ,2 ]
机构
[1] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
[2] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[3] Sejong Univ, Dept Math & Stat, Seoul, South Korea
[4] SK Telecom Co, New Business Div, IVD Business Unit, Immunodiagnost R&d Team, Songnam, South Korea
[5] Seoul Natl Univ Hosp, Dept Surg, Seoul 110744, South Korea
来源
BMC GENOMICS | 2015年 / 16卷
基金
新加坡国家研究基金会;
关键词
GENE-EXPRESSION; MICRORNAS; PROLIFERATION; STRATEGIES; PATHWAYS; CELLS;
D O I
10.1186/1471-2164-16-S9-S4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: microRNA (miRNA) expression plays an influential role in cancer classification and malignancy, and miRNAs are feasible as alternative diagnostic markers for pancreatic cancer, a highly aggressive neoplasm with silent early symptoms, high metastatic potential, and resistance to conventional therapies. Methods: In this study, we evaluated the benefits of multi-omics data analysis by integrating miRNA and mRNA expression data in pancreatic cancer. Using support vector machine (SVM) modelling and leave-one-out cross validation (LOOCV), we evaluated the diagnostic performance of single-or multi-markers based on miRNA and mRNA expression profiles from 104 PDAC tissues and 17 benign pancreatic tissues. For selecting even more reliable and robust markers, we performed validation by independent datasets from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) data depositories. For validation, miRNA activity was estimated by miRNA-target gene interaction and mRNA expression datasets in pancreatic cancer. Results: Using a comprehensive identification approach, we successfully identified 705 multi-markers having powerful diagnostic performance for PDAC. In addition, these marker candidates annotated with cancer pathways using gene ontology analysis. Conclusions: Our prediction models have strong potential for the diagnosis of pancreatic cancer.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [2] MODMatcher: Multi-Omics Data Matcher for Integrative Genomic Analysis
    Yoo, Seungyeul
    Huang, Tao
    Campbell, Joshua D.
    Lee, Eunjee
    Tu, Zhidong
    Geraci, Mark W.
    Powell, Charles A.
    Schadt, Eric E.
    Spira, Avrum
    Zhu, Jun
    PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (08)
  • [3] Multi-Omics Analysis Identifying Key Biomarkers in Ovarian Cancer
    Li, Ju-Yueh
    Li, Chia-Jung
    Lin, Li-Te
    Tsui, Kuan-Hao
    CANCER CONTROL, 2020, 27 (01)
  • [4] Bayesian integrative model for multi-omics data with missingness
    Fang, Zhou
    Ma, Tianzhou
    Tang, Gong
    Zhu, Li
    Yan, Qi
    Wang, Ting
    Celedon, Juan C.
    Chen, Wei
    Tseng, George C.
    BIOINFORMATICS, 2018, 34 (22) : 3801 - 3808
  • [5] Integrative multi-omics analysis of intestinal organoid differentiation
    Lindeboom, Rik G. H.
    van Voorthuijsen, Lisa
    Oost, Koen C.
    Rodriguez-Colman, Maria J.
    Luna-Velez, Maria V.
    Furlan, Cristina
    Baraille, Floriane
    Jansen, Pascal W. T. C.
    Ribeiro, Agnes
    Burgering, Boudewijn M. T.
    Snippert, Hugo J.
    Vermeulen, Michiel
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [6] Adaptive Sparse Multi-Block PLS Discriminant Analysis: An Integrative Method for Identifying Key Biomarkers from Multi-Omics Data
    Zhang, Runzhi
    Datta, Susmita
    GENES, 2023, 14 (05)
  • [7] Review of multi-omics data resources and integrative analysis for human brain disorders
    Dong, Xianjun
    Liu, Chunyu
    Dozmorov, Mikhail
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2021, 20 (04) : 223 - 234
  • [8] Integrative Multi-Omics Reveals Serum Markers of Tuberculosis in Advanced HIV
    Krishnan, Sonya
    Queiroz, Artur T. L.
    Gupta, Amita
    Gupte, Nikhil
    Bisson, Gregory P.
    Kumwenda, Johnstone
    Naidoo, Kogieleum
    Mohapi, Lerato
    Mave, Vidya
    Mngqibisa, Rosie
    Lama, Javier R.
    Hosseinipour, Mina C.
    Andrade, Bruno B.
    Karakousis, Petros C.
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [9] Generalized Bayesian Factor Analysis for Integrative Clustering with Applications to Multi-Omics Data
    Min, Eun Jeong
    Chang, Changgee
    Long, Qi
    2018 IEEE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2018, : 109 - 119
  • [10] Integrative multi-omics and big data analysis of global nutrition and radiotherapy trends
    Meng, Sibo
    Jiang, Dizhi
    Yang, Guanghui
    Guo, Kaiyue
    Yu, Enhao
    Wang, Yun
    Qu, Linli
    Li, Jiaxin
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2024, 177