Comparison of different approaches to the description of the detection limit of ion-selective electrodes

被引:32
作者
Jasielec, Jerzy J. [1 ]
Sokalski, Tomasz [1 ]
Filipek, Robert [2 ]
Lewenstam, Andrzej [1 ,2 ]
机构
[1] Abo Akad Univ, Proc Chem Ctr, Ctr Proc Analyt Chem & Sensor Technol ProSens, SF-20500 Turku, Finland
[2] AGH Univ Sci & Technol, Fac Mat Sci & Ceram, PL-30059 Krakow, Poland
关键词
Electro-diffusion; Nernst-Planck-Poisson; Ion-selective electrodes; Potentiometry; Membrane potential; Subnanomolar detection limit; Time-dependency; PLANCK-POISSON EQUATIONS; NERNST-PLANCK; MEMBRANE ELECTRODES; NUMERICAL-SOLUTION; COMPUTER-SIMULATION; POTENTIAL RESPONSE; TIME; DIFFUSION; MODEL;
D O I
10.1016/j.electacta.2010.05.083
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The Nernst-Planck-Poisson (NPP) model is a general approach to the description of the electro-diffusion processes which lead to the formation of the membrane potential. It takes into consideration several parameters of ion-selective electrodes (ISEs) which are ignored in simpler models. This paper presents a critical comparison between the NPP model and simpler models. The influence of different parameters on the detection limit of ISEs is discussed. This is achieved by comparing direct predictions of the models and, in contrast to any earlier treatment, by inverse modelling. This makes it possible to simultaneously find out which set of physical parameters of the system will produce the desired detection limit. (c) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6836 / 6848
页数:13
相关论文
共 32 条
[1]   Potentiometric ion sensors [J].
Bobacka, Johan ;
Ivaska, Ari ;
Lewenstam, Andrzej .
CHEMICAL REVIEWS, 2008, 108 (02) :329-351
[2]  
BRUMLEVE TR, 1978, J ELECTROANAL CHEM, V90, P1, DOI 10.1016/S0022-0728(78)80137-5
[3]   POLARIZATION IN ELECTROLYTIC SOLUTIONS .1. THEORY [J].
CHANG, HC ;
JAFFE, G .
JOURNAL OF CHEMICAL PHYSICS, 1952, 20 (07) :1071-1077
[4]   NUMERICAL SOLUTION OF TIME-DEPENDENT NERNST-PLANCK EQUATIONS [J].
COHEN, H ;
COOLEY, JW .
BIOPHYSICAL JOURNAL, 1965, 5 (02) :145-&
[5]  
CRANK J, 1970, MATH DIFFUSION
[6]  
Filipek R., 2005, POLISH CERAMIC B, V90, P103
[7]  
Glicksman M. E., 2000, Diffusion in Solids: Field Theory, Solid-State Principles, and Applications
[8]   Electro-diffusion in multicomponent ion-selective membranes; numerical solution of the coupled nernst-planck-poisson equations [J].
Grysakowski, Bartosz ;
Bozek, Boguslaw ;
Danielewski, Marek .
DIFFUSION IN SOLIDS AND LIQUIDS III, 2008, 273-276 :113-+
[9]   Stiff differential equations solved by Radau methods [J].
Hairer, E ;
Wanner, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 111 (1-2) :93-111
[10]   INTERPRETATION OF SELECTIVITY COEFFICIENTS OF SOLID-STATE ION-SELECTIVE ELECTRODES BY MEANS OF DIFFUSION-LAYER MODEL [J].
HULANICKI, A ;
LEWENSTAM, A .
TALANTA, 1977, 24 (03) :171-175