Prediction of Soil Shear Strength Parameters Using Combined Data and Different Machine Learning Models

被引:19
|
作者
Zhu, Longtu [1 ,2 ]
Liao, Qingxi [1 ,2 ]
Wang, Zetian [1 ]
Chen, Jie [1 ]
Chen, Zhiling [1 ]
Bian, Qiwang [1 ]
Zhang, Qingsong [1 ,2 ]
机构
[1] Huazhong Agr Univ, Coll Engn, Wuhan 430070, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Agr Equipment Midlower Yangtze River, Wuhan 430070, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 10期
基金
中国博士后科学基金;
关键词
soil cohesion; internal friction angle; measuring device; prediction model; machine learning; LEAST-SQUARES REGRESSION; WATER-RETENTION; NEURAL-NETWORKS; SURFACE SOIL; FRICTION; TERM; IRAN;
D O I
10.3390/app12105100
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Soil shear strength is an important indicator of soil erosion sensitivity and the tillage performance of the cultivated layer. Measuring soil shear strength at a field scale is difficult, time-consuming, and costly. This study proposes a new method to predict soil shear strength parameters (cohesion and internal friction angle) by combining cone penetration test (CPT) data and soil properties. A portable CPT measuring device with two pressure sensors was designed to collect two CPT data in farmland, namely cone tip resistance, and cone side pressure. Direct shear tests were performed in the laboratory to determine the soil shear strength parameters for 83 CPT data collection points. Two easily available soil properties (water content and bulk density) were determined via the oven-drying method. Using the two CPT data and the two soil properties as predictors, three machine learning (ML) models were built for predicting soil cohesion and the internal friction angle, including backpropagation neural network (BPNN), partial least squares regression (PLSR), and support vector regression (SVR). The prediction performance of each model was evaluated using the coefficient of determination (R-2), the root-mean-square error (RMSE), and the relative error (RE). The results suggested that among all the evaluated models, the BPNN model was the most suitable prediction model for soil cohesion, and the SVR model performed best in predicting soil internal friction angle. Thus, our findings provide a foundation for the convenient and low-cost measurement of soil shear strength parameters.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A DATA-DRIVEN WORKFLOW FOR PREDICTION OF FRACTURING PARAMETERS WITH MACHINE LEARNING
    Zhu, Zhihua
    Hsu, Maoya
    Kun, Ding
    Wang, Tianyu
    He, Xiaodong
    Tian, Shouceng
    THERMAL SCIENCE, 2024, 28 (2A): : 1085 - 1090
  • [42] An evaluation of machine learning and deep learning models for drought prediction using weather data
    Jiang, Weiwei
    Luo, Jiayun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 3611 - 3626
  • [43] A DATA-DRIVEN WORKFLOW FOR PREDICTION OF FRACTURING PARAMETERS WITH MACHINE LEARNING
    Zhu, Zhihua
    Hsu, Maoya
    Kun, Ding
    Wang, Tianyu
    He, Xiaodong
    Tian, Shouceng
    THERMAL SCIENCE, 2024, 28 (02): : 1085 - 1090
  • [44] Data Driven Natural Gas Spot Price Prediction Models Using Machine Learning Methods
    Su, Moting
    Zhang, Zongyi
    Zhu, Ye
    Zha, Donglan
    Wen, Wenying
    ENERGIES, 2019, 12 (09)
  • [45] Machine learning for soil-geosynthetic interface shear strength analysis
    Abenezer, T. T.
    Araujo, G. L. S.
    Evangelista, F., Jr.
    Gomes, R. M. S.
    GEOSYNTHETICS: LEADING THE WAY TO A RESILIENT PLANET, 12ICG 2023, 2024, : 705 - 710
  • [46] Prediction of soil water characteristic curve of unsaturated soil using machine learning
    Sharma, Shraddha
    Rathor, Ajay Pratap Singh
    Sharma, Jitendra Kumar
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)
  • [47] Shear Strength Prediction of Slender Concrete Beams Reinforced with FRP Rebar Using Data-Driven Machine Learning Algorithms
    Karim, Mohammad Rezaul
    Islam, Kamrul
    Billah, A. H. M. Muntasir
    Alam, M. Shahria
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2023, 27 (02)
  • [48] SOIL MOISTURE PREDICTION USING MACHINE LEARNING
    Prakash, Shikha
    Sharma, Animesh
    Sahu, Sitanshu Shekhar
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018,
  • [49] Interpretable machine learning models for concrete compressive strength prediction
    Hoang, Huong-Giang Thi
    Nguyen, Thuy-Anh
    Ly, Hai-Bang
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2025, 10 (01)
  • [50] Diabetes Prediction Using Ensembling of Different Machine Learning Classifiers
    Hasan, Md. Kamrul
    Alam, Md. Ashraful
    Das, Dola
    Hossain, Eklas
    Hasan, Mahmudul
    IEEE ACCESS, 2020, 8 : 76516 - 76531