Efficient parallel finite field modular multiplier

被引:0
|
作者
Li, H [1 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
关键词
finite field arithmetic; reconfigurable computing; all one polynomial; redundant canonical basis; VLSI; embedded systems; encryption;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a redundant canonical basis representation with the irreducible All One Polynomial (AOP) is defined. Based on the proposed redundant representation, the multiplication operation can be simplified. A fast bit-parallel multipliers is proposed that require (m+1)(2) 2-input AND gates and m(m+1) 2-input XOR gates. The time delay is T-AND + [log(2)(m + 1)]T-XOR. The proposed architectures are highly modular and well suited for high speed VLSI implementations.
引用
收藏
页码:434 / 437
页数:4
相关论文
共 50 条
  • [41] Efficient Implementation of Low Time Complexity and Pipelined Bit-Parallel Polynomial Basis Multiplier over Binary Finite Fields
    Rashidi, Bahram
    Farashahi, Reza Rezaeian
    Sayedi, Sayed Masoud
    ISECURE-ISC INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2015, 7 (02): : 101 - 114
  • [42] LOW-COMPLEXITY SYSTOLIC DESIGN FOR FINITE FIELD MULTIPLIER
    Rajalakshmi, T. P.
    Rajesh, C. B.
    2014 INTERNATIONAL CONFERENCE ON GREEN COMPUTING COMMUNICATION AND ELECTRICAL ENGINEERING (ICGCCEE), 2014,
  • [43] Novel radix finite field multiplier for GF(2(m))
    Mekhallalati, MC
    Ashur, AS
    Ibrahim, MK
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 1997, 15 (03): : 233 - 245
  • [44] Finite Field Polynomial Multiplier with Linear Feedback Shift Register
    Chiou, Che-Wun
    Lee, Chiou-Yng
    Lin, Jim-Min
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2007, 10 (03): : 253 - 264
  • [45] Finite field polynomial multiplier with linear feedback shift register
    Department of Computer Science and Information Engineering, Ching Yun University, Chung-Li 320, Taiwan
    不详
    不详
    Tamkang J. Sci. Eng., 2007, 3 (253-264):
  • [46] Parallel Grobner Basis Rewriting and Memory Optimization for Efficient Multiplier Verification
    Liu, Hongduo
    Liao, Peiyu
    Huang, Junhua
    Zhen, Hui-Ling
    Yuan, Mingxuan
    Ho, Tsung-Yi
    Yu, Bei
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
  • [47] VLSI Design of 128 Point Finite Field FFT Multiplier
    Aravind, A. V.
    Murugan, Senthil
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 724 - 727
  • [48] A new finite-field multiplier using redundant representation
    Namin, Ashkan Hosseinzadeh
    Wu, Huapeng
    Ahmadi, Majid
    IEEE TRANSACTIONS ON COMPUTERS, 2008, 57 (05) : 716 - 720
  • [49] A modular design for parallel adaptive finite element computational kernels
    Banas, K
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 155 - 162
  • [50] Optimised bit serial modular multiplier for implementation on field programmable gate arrays
    Marnane, WP
    ELECTRONICS LETTERS, 1998, 34 (08) : 738 - 739