Learning Sparse Feature Representations Using Probabilistic Quadtrees and Deep Belief Nets

被引:53
作者
Basu, Saikat [1 ]
Karki, Manohar [1 ]
Ganguly, Sangram [2 ]
DiBiano, Robert [5 ]
Mukhopadhyay, Supratik [1 ]
Gayaka, Shreekant [3 ]
Kannan, Rajgopal [1 ]
Nemani, Ramakrishna [4 ]
机构
[1] Louisiana State Univ, Dept Comp Sci, Baton Rouge, LA 70803 USA
[2] NASA, BAERI, Ames Res Ctr, Moffett Field, CA 94035 USA
[3] Appl Mat Inc, Santa Clara, CA 95054 USA
[4] NASA, Adv Supercomp Div, Ames Res Ctr, Moffett Field, CA 94035 USA
[5] Autopredict Coding LLC, Baton Rouge, LA USA
关键词
Deep neural networks; Handwritten digit classification; Probabilistic quadtrees; Deep belief networks; Sparse feature representation;
D O I
10.1007/s11063-016-9556-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning sparse feature representations is a useful instrument for solving an unsupervised learning problem. In this paper, we present three labeled handwritten digit datasets, collectively called n-MNIST by adding noise to the MNIST dataset, and three labeled datasets formed by adding noise to the offline Bangla numeral database. Then we propose a novel framework for the classification of handwritten digits that learns sparse representations using probabilistic quadtrees and Deep Belief Nets. On the MNIST, n-MNIST and noisy Bangla datasets, our framework shows promising results and outperforms traditional Deep Belief Networks.
引用
收藏
页码:855 / 867
页数:13
相关论文
共 18 条
[11]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[12]  
Koller D, 2009, Probabilistic graphical models: principles and techniques
[13]  
Lazebnik S., COMPUTER VISION PATT, V2, P2169
[14]  
Lee H., 2006, Adv Neural Inform Process Syst, V19, DOI DOI 10.5555/2976456.2976557
[15]  
Miguel A, 2005, CONTRASTIVE DIVERGEN
[16]   Acoustic Modeling Using Deep Belief Networks [J].
Mohamed, Abdel-rahman ;
Dahl, George E. ;
Hinton, Geoffrey .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (01) :14-22
[17]  
Ranzato M, 2008, ADV NEURAL INFORM PR
[18]  
Srivastava N, 2014, J MACH LEARN RES, V15, P1929