Bifurcation of Limit Cycles from a Polynomial Degenerate Center

被引:1
作者
Buica, Adriana [1 ]
Gine, Jaume [2 ]
Llibre, Jaume [3 ]
机构
[1] Univ Babes Bolyai, Dept Appl Math, RO-400084 Cluj Napoca, Romania
[2] Univ Lleida, Dept Matemat, Lleida, Catalonia, Spain
[3] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
limit cycles; degenerate center; polynomial differential system; INTEGRABILITY; OSCILLATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Melnikov functions at any order, we provide upper bounds for the maximum number of limit cycles bifurcating from the period annulus of the degenerate center (x) over dot = -y((x(2) + y(2))/2)(m) and (y) over dot = x((x(2) + y(2))/2)(m) with m >= 1, when we perturb it inside the whole class of polynomial vector fields of degree n. The positive integers m and n are arbitrary. As far as we know there is only one paper that provide a similar result working with Melnikov functions at any order and perturbing the linear center (x) over dot = -y, (y) over dot = x.
引用
收藏
页码:597 / 609
页数:13
相关论文
共 17 条
[1]  
Andronow A, 1929, CR HEBD ACAD SCI, V189, P559
[2]  
Bautin N. N., 1954, Amer. Math. Soc. Transl., V100, P397
[3]  
Berezin I.S., 1964, Computing Methods, VII
[4]   Darboux integrability and the inverse integrating factor [J].
Chavarriga, J ;
Giacomini, H ;
Giné, J ;
Llibre, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) :116-139
[5]   On the integrability of two-dimensional flows [J].
Chavarriga, J ;
Giacomini, H ;
Giné, J ;
Llibre, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (01) :163-182
[6]  
Chow S.-N., 1994, NORMAL FORMS BIFURCA
[7]   Successive derivatives of a first return map, application to the study of quadratic vector fields [J].
Francoise, JP .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :87-96
[8]   Integrability, degenerate centers, and limit cycles for a class of polynomial differential systems [J].
Gine, J. ;
Llibre, J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) :1453-1462
[9]   On second order bifurcations of limit cycles [J].
Iliev, ID .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :353-366
[10]   The number of limit cycles due to polynomial perturbations of the harmonic oscillator [J].
Iliev, ID .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 :317-322