A modeling approach to financial time series based on market microstructure model with jumps

被引:9
|
作者
Peng, Hui [1 ,6 ]
Kitagawa, Genshiro [2 ]
Tamura, Yoshiyasu [3 ]
Xi, Yanhui [4 ,6 ]
Qin, Yemei [1 ,6 ]
Chen, Xiaohong [5 ,6 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Res Org Informat & Syst, Minato Ku, Tokyo 1050001, Japan
[3] Inst Stat Math, Tachikawa, Tokyo 1908562, Japan
[4] Changsha Univ Sci & Technol, Hunan Prov Higher Educ Key Lab Power Syst Safety, Changsha 410004, Hunan, Peoples R China
[5] Cent S Univ, Sch Business, Changsha 410083, Hunan, Peoples R China
[6] Collaborat Innovat Ctr Resource Conserving Enviro, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Financial time series; Microstructure modeling; Jump-diffusion model; Jump detection; Extended Kalman filter; Maximum likelihood estimation; CONDITIONAL HETEROSCEDASTICITY; ASSET ALLOCATION; NEURAL-NETWORK; VOLATILITY; VARIANCE; RETURNS; NOISE;
D O I
10.1016/j.asoc.2014.10.048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A continuous-time generalized market microstructure (GMMS) model and its discretized model are proposed for characterizing a class of financial time series. The GMMS model is a kind of jump-diffusion model that may describe the dynamic behaviors of measurable market price, immeasurable market excess demand and market liquidity, as well as the interaction among the three variates in a market. The model includes a jump component that is used to capture the large abnormal variations of financial assets, which may occur when a market is affected by some special events happened suddenly, such as release of important financial information. On the basis of the discrete-time GMMS model, an online recursive jump detection algorithm is proposed, which is developed in accordance with the Markov property of financial time series and the Bayes theorem. Simulations and case studies demonstrate the feasibility and effectiveness of the model and its estimation approach presented in this paper. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [21] MODELING NONSTATIONARY AND LEPTOKURTIC FINANCIAL TIME SERIES
    Chen, Ying
    Spokoiny, Vladimir
    ECONOMETRIC THEORY, 2015, 31 (04) : 703 - 728
  • [22] Financial Time Series Forecasting Model Based on EMD and Rolling Grey Model
    Li, Binjing
    Liu, Fenggui
    Lin, Jun
    Wang, Zhongfeng
    2020 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2020, : 265 - 270
  • [23] Cepstral-based clustering of financial time series
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    D'Ecclesia, Rita L.
    Maharaj, Elizabeth Ann
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 161
  • [24] Clustering financial time series: New insights from an extended hidden Markov model
    Dias, Jose G.
    Vermunt, Jeroen K.
    Ramos, Sofia
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 243 (03) : 852 - 864
  • [25] FINANCIAL TIME SERIES PREDICTION MODEL BASED RECURRENT NEURAL NETWORK
    Cheng Chaozhi
    Gao Yachun
    Ni Jingwei
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 33 - 38
  • [26] Financial Time Series Forecasting with the Deep Learning Ensemble Model
    He, Kaijian
    Yang, Qian
    Ji, Lei
    Pan, Jingcheng
    Zou, Yingchao
    MATHEMATICS, 2023, 11 (04)
  • [27] NON-LINEAR VOLATILITY MODELING OF ECONOMIC AND FINANCIAL TIME SERIES USING HIGH FREQUENCY DATA
    Matei, Marius
    ROMANIAN JOURNAL OF ECONOMIC FORECASTING, 2011, 14 (02): : 116 - 141
  • [28] Financial time series modeling using the Hurst exponent
    Tzouras, Spilios
    Anagnostopoulos, Christoforos
    Mccoy, Emma
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 425 : 50 - 68
  • [29] Enhancing financial time series forecasting in the shipping market: A hybrid approach with Light Gradient Boosting Machine
    Song, Xuefei
    Chen, Zhong Shuo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136
  • [30] Scaling symmetry, renormalization, and time series modeling: The case of financial assets dynamics
    Zamparo, Marco
    Baldovin, Fulvio
    Caraglio, Michele
    Stella, Attilio L.
    PHYSICAL REVIEW E, 2013, 88 (06)