Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic

被引:67
作者
Kan, Min [1 ]
Zhou, Jian [1 ]
Sun, Qiang [1 ,2 ,3 ]
Wang, Qian [2 ,3 ]
Kawazoe, Yoshiyuki [4 ]
Jena, Puru [3 ]
机构
[1] Peking Univ, Dept Mat Sci & Engn, Coll Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
[3] Virginia Commonwealth Univ, Dept Phys, Richmond, VA 23284 USA
[4] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 15期
基金
美国能源部; 中国国家自然科学基金;
关键词
BORON-NITRIDE; MOLECULES;
D O I
10.1103/PhysRevB.85.155450
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Zigzag-edged graphene nanoribbons are antiferromagnetic in cross-edge coupling and unsuitable for spintronics applications. Two new strategies of tuning antiferromagnetism (AFM) to ferromagnetism (FM) in graphene nanoribbons are introduced through topological line defects composed of pentagonal and octagonal rings, and their ability to induce magnetic transition is probed by using density functional theory. The resulting exchange energy is found to be large enough for ferromagnetism to be observed at room temperature. Both strategies are experimentally feasible, and the results suggest that defect engineering may provide a novel path to manipulate the magnetic properties of graphene nanoribbons.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[2]   One-dimensional extended lines of divacancy defects in graphene [J].
Botello-Mendez, A. R. ;
Declerck, X. ;
Terrones, M. ;
Terrones, H. ;
Charlier, J. -C. .
NANOSCALE, 2011, 3 (07) :2868-2872
[3]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[4]   Crystallographic etching of few-layer graphene [J].
Datta, Sujit S. ;
Strachan, Douglas R. ;
Khamis, Samuel M. ;
Johnson, A. T. Charlie .
NANO LETTERS, 2008, 8 (07) :1912-1915
[5]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[6]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[7]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[8]   Graphene Valley Filter Using a Line Defect [J].
Gunlycke, D. ;
White, C. T. .
PHYSICAL REVIEW LETTERS, 2011, 106 (13)
[9]   Controllable N-Doping of Graphene [J].
Guo, Beidou ;
Liu, Qian ;
Chen, Erdan ;
Zhu, Hewei ;
Fang, Liang ;
Gong, Jian Ru .
NANO LETTERS, 2010, 10 (12) :4975-4980
[10]   CALCULATION OF MAGNETIZATION AND TOTAL ENERGY OF VANADIUM AS A FUNCTION OF LATTICE-PARAMETER [J].
HATTOX, TM ;
CONKLIN, JB ;
SLATER, JC ;
TRICKEY, SB .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1973, 34 (10) :1627-1638