A 1.6-V 25-μA 5-ppm/°C Curvature-Compensated Bandgap Reference

被引:94
作者
Zhou, Ze-Kun [1 ]
Shi, Yue [1 ,2 ]
Huang, Zhi [1 ]
Zhu, Pei-Sheng [1 ]
Ma, Ying-Qian [1 ]
Wang, Yong-Chun [1 ]
Chen, Zao [3 ]
Ming, Xin [1 ]
Zhang, Bo [1 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Commun Engn, Chengdu 610225, Peoples R China
[3] So Methodist Univ, Dept Elect Engn, Dallas, TX 75205 USA
关键词
Exponential curvature compensation; high-order curvature compensation; logarithmic compensation term; piecewise compensation technique; PSNA without filtering capacitors; temperature coefficient; GAIN TEMPERATURE-DEPENDENCE; VOLTAGE REFERENCE; REFERENCE CIRCUIT; SUBTHRESHOLD MOSFETS; BICMOS BANDGAP; SUPPLY-VOLTAGE; CMOS; TRANSISTORS; MODE;
D O I
10.1109/TCSI.2011.2169732
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A high precision high-order curvature-compensated bandgap reference (BGR) compatible with standard BiCMOS process is presented in this paper that is capable of working down to input voltages of 1.6 V with 1.285 V output voltage. High-order curvature correction for this reference is accomplished by a novel piecewise technique, which realizes exponential curvature compensation in temperature range, and a logarithmic compensation term proportional to V-T ln T in higher temperature range through simple structures. Experimental results of the proposed BGR implemented in 0.5-mu m BiCMOS process demonstrate that a temperature coefficient (TC) of 5 ppm/degrees C is realized at 3.6 V power supply, a power-supply noise attenuation (PSNA) of 70 dB is achieved without filtering capacitors, and the line regulation is better than 0.47 mV/V from 1.6 V to 5 V supply voltage while dissipating a maximum supply current of 25 mu A. The active area of the presented BGR is 180 mu m x 220 mu m.
引用
收藏
页码:677 / 684
页数:8
相关论文
共 34 条
[1]   Second-order compensated bandgap reference with convex correction [J].
Avoinne, C ;
Rashid, T ;
Chowdhury, V ;
Rahajandraïbe, W ;
Dufaza, C .
ELECTRONICS LETTERS, 2005, 41 (05) :276-277
[2]   A low-supply-voltage CMOS sub-bandgap reference [J].
Becker-Gomez, Adriana ;
Viswanathan, T. Lakshmi ;
Viswanathan, T. R. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2008, 55 (07) :609-613
[3]   A 1-V CMOS current reference with temperature and process compensation [J].
Bendali, Abdelhalim ;
Audet, Yves .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (07) :1424-1429
[4]   SIMPLE 3-TERMINAL IC BANDGAP REFERENCE [J].
BROKAW, AP .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1974, SC 9 (06) :388-393
[5]   A CMOS bandgap reference without resistors [J].
Buck, AE ;
McDonald, CL ;
Lewis, SH ;
Viswanathan, TR .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2002, 37 (01) :81-83
[6]   INVESTIGATION OF CURRENT-GAIN TEMPERATURE DEPENDENCE IN SILICON TRANSISTORS [J].
BUHANAN, D .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1969, ED16 (01) :117-+
[7]  
Chen J.H., 2007, P 7 INT C ASIC OCT
[8]   THE TEMPERATURE-DEPENDENCE OF THE AMPLIFICATION FACTOR OF BIPOLAR-JUNCTION TRANSISTORS [J].
DILLARD, WC ;
JAEGER, RC .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1987, 34 (01) :139-142
[9]  
Filanovsky I. M., 1996, P IEEE 39 MIDW S CIR, V2, P943
[10]   A low-voltage low-power voltage reference based on subthreshold MOSFETs [J].
Giustolisi, G ;
Palumbo, G ;
Criscione, M ;
Cutrì, F .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (01) :151-154