Primary carbonatite melt from deeply subducted oceanic crust

被引:231
作者
Walter, M. J. [1 ]
Bulanova, G. P. [1 ]
Armstrong, L. S. [1 ]
Keshav, S. [2 ]
Blundy, J. D. [1 ]
Gudfinnsson, G. [2 ]
Lord, O. T. [1 ]
Lennie, A. R. [3 ]
Clark, S. M. [4 ]
Smith, C. B. [5 ]
Gobbo, L. [6 ]
机构
[1] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England
[2] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany
[3] SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Rio Tinto Min & Explorat Ltd, London W2 6LG, England
[6] Rio Tinto Desinvolvimentos Min Ltda, BR-71200020 Brasilia, DF, Brazil
基金
英国自然环境研究理事会;
关键词
D O I
10.1038/nature07132
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface(1). Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes(2). Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes(3-8). Here we provide experimental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium- silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition- zone depths. Further to perovskite, calcic- majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small- degree melts of subducted crust can be viewed as agents of chemical mass- transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.
引用
收藏
页码:622 / U30
页数:5
相关论文
共 36 条
  • [1] Arima M, 2002, GEOLOGY, V30, P691, DOI 10.1130/0091-7613(2002)030<0691:DNAGBR>2.0.CO
  • [2] 2
  • [3] MINERAL-AQUEOUS FLUID PARTITIONING OF TRACE-ELEMENTS AT 900-DEGREES-C AND 2.0 GPA - CONSTRAINTS ON THE TRACE-ELEMENT CHEMISTRY OF MANTLE AND DEEP-CRUSTAL FLUIDS
    BRENAN, JM
    SHAW, HF
    RYERSON, FJ
    PHINNEY, DL
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 1995, 59 (16) : 3331 - 3350
  • [4] Detection of a Ca-rich lithology in the Earth's deep (&gt;300 km) convecting mantle
    Brenker, FE
    Vincze, L
    Vekemans, B
    Nasdala, L
    Stachel, T
    Vollmer, C
    Kersten, M
    Somogyi, A
    Adams, F
    Joswig, W
    Harris, JW
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2005, 236 (3-4) : 579 - 587
  • [5] Carbonates from the lower part of transition zone or even the lower mantle
    Brenker, Frank E.
    Vollmer, Christian
    Vincze, Laszlo
    Vekemans, Bart
    Szymanski, Anja
    Janssens, Koen
    Szaloki, Imre
    Nasdala, Lutz
    Joswig, Wemer
    Kaminsky, Felix
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2007, 260 (1-2) : 1 - 9
  • [6] THE FORMATION OF DIAMOND
    BULANOVA, GP
    [J]. JOURNAL OF GEOCHEMICAL EXPLORATION, 1995, 53 (1-3) : 1 - 23
  • [7] Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean
    Coltorti, M
    Bonadiman, C
    Hinton, RW
    Siena, F
    Upton, BGJ
    [J]. JOURNAL OF PETROLOGY, 1999, 40 (01) : 133 - 165
  • [8] Corgne A, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2001GL614398
  • [9] Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions
    Dasgupta, R
    Hirschmann, MM
    Withers, AC
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2004, 227 (1-2) : 73 - 85
  • [10] HAGGERTY SE, 1999, GEOCHEMICAL SOC SPEC, V6, P105