Shimura Curves and Special Values of p-adic L-functions

被引:19
作者
Brooks, Ernest Hunter [1 ]
机构
[1] Ecole Polytech Fed Lausanne SB MATHGEOM, Stn 8, CH-1015 Lausanne, Switzerland
基金
美国国家科学基金会;
关键词
HEEGNER POINTS; DERIVATIVES; HEIGHTS; SERIES; CYCLES;
D O I
10.1093/imrn/rnu062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct "generalized Heegner cycles" on a variety fibered over a Shimura curve, defined over a number field. We show that their images under the p-adic Abel-Jacobi map coincide with the values (outside the range of interpolation) of a p-adic L-function L-p(f, chi) which interpolates special values of the Rankin-Selberg convolution of a fixed newform f and a theta-series theta(chi) attached to an unramified Hecke character of an imaginary quadratic field K. This generalizes previous work of Bertolini, Darmon, and Prasanna, which demonstrated a similar result in the case of modular curves. Our main tool is the theory of Serre-Tate coordinates, which yields p-adic expansions of modular forms at CM points, replacing the role of q-expansions in computations on modular curves.
引用
收藏
页码:4177 / 4241
页数:65
相关论文
共 38 条
[21]   CM cycles on Shimura curves, and p-adic L-function [J].
Masdeu, Marc .
COMPOSITIO MATHEMATICA, 2012, 148 (04) :1003-1032
[22]   POWER SERIES EXPANSIONS OF MODULAR FORMS AND THEIR INTERPOLATION PROPERTIES [J].
Mori, Andrea .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (02) :529-577
[23]   ON THE P-ADIC HEIGHT OF HEEGNER CYCLES [J].
NEKOVAR, J .
MATHEMATISCHE ANNALEN, 1995, 302 (04) :609-686
[24]  
Nekovar J., 2000, CRM Proc. Lecture Notes, V24, P367, DOI DOI 10.1090/CRMP/024/18
[25]   HEEGNER POINTS AND DERIVATIVES OF P-ADIC L-FUNCTIONS [J].
PERRINRIOU, B .
INVENTIONES MATHEMATICAE, 1987, 89 (03) :455-510
[26]   Integrality of a ratio of Petersson norms and level-lowering congruences [J].
Prasanna, Kartik .
ANNALS OF MATHEMATICS, 2006, 163 (03) :901-967
[27]  
Serre Jean-Pierre, 1973, Lecture Notes in Math., V350, P191
[28]   CONSTRUCTION OF CLASS FIELDS AND ZETA FUNCTIONS OF ALGEBRAIC CURVES [J].
SHIMURA, G .
ANNALS OF MATHEMATICS, 1967, 85 (01) :58-+
[29]  
Skinner C., 2005, PREPRINT
[30]   Heights of Heegner points on Shimura curves [J].
Zhang, SW .
ANNALS OF MATHEMATICS, 2001, 153 (01) :27-147