Shimura Curves and Special Values of p-adic L-functions

被引:19
作者
Brooks, Ernest Hunter [1 ]
机构
[1] Ecole Polytech Fed Lausanne SB MATHGEOM, Stn 8, CH-1015 Lausanne, Switzerland
基金
美国国家科学基金会;
关键词
HEEGNER POINTS; DERIVATIVES; HEIGHTS; SERIES; CYCLES;
D O I
10.1093/imrn/rnu062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct "generalized Heegner cycles" on a variety fibered over a Shimura curve, defined over a number field. We show that their images under the p-adic Abel-Jacobi map coincide with the values (outside the range of interpolation) of a p-adic L-function L-p(f, chi) which interpolates special values of the Rankin-Selberg convolution of a fixed newform f and a theta-series theta(chi) attached to an unramified Hecke character of an imaginary quadratic field K. This generalizes previous work of Bertolini, Darmon, and Prasanna, which demonstrated a similar result in the case of modular curves. Our main tool is the theory of Serre-Tate coordinates, which yields p-adic expansions of modular forms at CM points, replacing the role of q-expansions in computations on modular curves.
引用
收藏
页码:4177 / 4241
页数:65
相关论文
共 38 条
[1]  
[Anonymous], 1985, ANN MATH STUDIES
[2]   Chow-Heegner Points on CM Elliptic Curves and Values of p-adic L-functions [J].
Bertolini, Massimo ;
Darmon, Henri ;
Prasanna, Kartik .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (03) :745-793
[3]   GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES [J].
Bertolini, Massimo ;
Darmon, Henri ;
Prasanna, Kartik .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1033-1148
[4]   p-ADIC RANKIN L-SERIES AND RATIONAL POINTS ON CM ELLIPTIC CURVES [J].
Bertolini, Massimo ;
Darmon, Henri ;
Prasanna, Kartik .
PACIFIC JOURNAL OF MATHEMATICS, 2012, 260 (02) :261-303
[5]  
Besser A., 1995, J ALGEBRAIC GEOM, V4, P659
[6]  
Bhargava M., PREPRINT
[7]  
Bloch S., 1990, Progr. Math., VI, P333
[8]   Anticyclotomic p-adic L-function of Central Critical Rankin-Selberg L-value [J].
Brakocevic, Miljan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (21) :4967-5018
[9]  
Breuil C, 2010, ASTERISQUE, P255
[10]   Integral models of certain shimura curves [J].
Buzzard, K .
DUKE MATHEMATICAL JOURNAL, 1997, 87 (03) :591-612