On the existence of a time inhomogeneous skew Brownian motion and some related laws

被引:19
作者
Etore, Pierre [1 ]
Martinez, Miguel [1 ]
机构
[1] Univ Paris Est Marne la Vallee, Paris, France
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2012年 / 17卷
关键词
Skew Brownian motion; Local time; Straddling excursion; LOCAL TIME; EQUATION; FLOW;
D O I
10.1214/EJP.v17-1858
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is devoted to the construction of a solution for the "skew inhomogeneous Brownian motion" equation: B-t(beta) = x + W-t + integral(t)(0) beta(s)dL(s)(0)(B-beta), t >= 0. Here beta : R+ -> [-1, 1] is a Borel function, W is a standard Brownian motion, and L-t(0) (B-beta) stands for the symmetric local time at 0 of the unknown process B-beta. Using the description of the straddling excursion above a deterministic time t, we also compute the joint law of (B-t(beta), L-t(0), (B-beta), G(t)(beta)) where G(t)(beta) is the last passage time at 0 before t of B-beta.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] OCCUPATION TIME PROBLEM FOR MULTIFRACTIONAL BROWNIAN MOTION
    Ouahra, Mohamed Ait
    Guerbaz, Raby
    Ouahhabi, Hanae
    Sghir, Aissa
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2019, 39 (01): : 99 - 113
  • [42] Brownian motion normalized by maximum local time
    Shi, Z
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 65 (02) : 217 - 231
  • [43] A note on the local time of fractional Brownian motion
    Kasahara, Y
    Ogawa, N
    JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (01) : 207 - 216
  • [44] A Note on the Local Time of Fractional Brownian Motion
    Yuji Kasahara
    Namiko Ogawa
    Journal of Theoretical Probability, 1999, 12 : 207 - 216
  • [45] An Ideal Class to Construct Solutions for Skew Brownian Motion Equations
    Fulgence Eyi Obiang
    Octave Moutsinga
    Youssef Ouknine
    Journal of Theoretical Probability, 2022, 35 : 894 - 916
  • [46] A simple European option pricing formula with a skew Brownian motion
    Pasricha, Puneet
    He, Xin-Jiang
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2023, 37 (04) : 1029 - 1034
  • [47] Occupation time problems for fractional Brownian motion and some other self-similar processes
    Ouahra, M. Ait
    Ouali, M.
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2009, 17 (01) : 69 - 89
  • [48] OCCUPATION AND LOCAL TIMES FOR SKEW BROWNIAN MOTION WITH APPLICATIONS TO DISPERSION ACROSS AN INTERFACE (vol 21, pg 183, 2011)
    Appuhamillage, Thilanka
    Bokil, Vrushali
    Thomann, Enrique
    Waymire, Edward
    Wood, Brian
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (05) : 2050 - 2051
  • [49] Timing in the presence of directional predictability: optimal stopping of skew Brownian motion
    Luis H. R. Alvarez E.
    Paavo Salminen
    Mathematical Methods of Operations Research, 2017, 86 : 377 - 400
  • [50] A Simulation-Based Study on Bayesian Estimators for the Skew Brownian Motion
    Barahona, Manuel
    Rifo, Laura
    Sepulveda, Maritza
    Torres, Soledad
    ENTROPY, 2016, 18 (07):