共 50 条
On the existence of a time inhomogeneous skew Brownian motion and some related laws
被引:19
作者:
Etore, Pierre
[1
]
Martinez, Miguel
[1
]
机构:
[1] Univ Paris Est Marne la Vallee, Paris, France
来源:
ELECTRONIC JOURNAL OF PROBABILITY
|
2012年
/
17卷
关键词:
Skew Brownian motion;
Local time;
Straddling excursion;
LOCAL TIME;
EQUATION;
FLOW;
D O I:
10.1214/EJP.v17-1858
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This article is devoted to the construction of a solution for the "skew inhomogeneous Brownian motion" equation: B-t(beta) = x + W-t + integral(t)(0) beta(s)dL(s)(0)(B-beta), t >= 0. Here beta : R+ -> [-1, 1] is a Borel function, W is a standard Brownian motion, and L-t(0) (B-beta) stands for the symmetric local time at 0 of the unknown process B-beta. Using the description of the straddling excursion above a deterministic time t, we also compute the joint law of (B-t(beta), L-t(0), (B-beta), G(t)(beta)) where G(t)(beta) is the last passage time at 0 before t of B-beta.
引用
收藏
页数:27
相关论文