On the existence of a time inhomogeneous skew Brownian motion and some related laws

被引:19
作者
Etore, Pierre [1 ]
Martinez, Miguel [1 ]
机构
[1] Univ Paris Est Marne la Vallee, Paris, France
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2012年 / 17卷
关键词
Skew Brownian motion; Local time; Straddling excursion; LOCAL TIME; EQUATION; FLOW;
D O I
10.1214/EJP.v17-1858
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is devoted to the construction of a solution for the "skew inhomogeneous Brownian motion" equation: B-t(beta) = x + W-t + integral(t)(0) beta(s)dL(s)(0)(B-beta), t >= 0. Here beta : R+ -> [-1, 1] is a Borel function, W is a standard Brownian motion, and L-t(0) (B-beta) stands for the symmetric local time at 0 of the unknown process B-beta. Using the description of the straddling excursion above a deterministic time t, we also compute the joint law of (B-t(beta), L-t(0), (B-beta), G(t)(beta)) where G(t)(beta) is the last passage time at 0 before t of B-beta.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] An explicit representation of the transition densities of the skew Brownian motion with drift and two semipermeable barriers
    Dereudre, David
    Mazzonetto, Sara
    Roelly, Sylvie
    MONTE CARLO METHODS AND APPLICATIONS, 2016, 22 (01) : 1 - 23
  • [22] Skew Brownian motion-type of extensions
    VuolleApiala, J
    JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (04) : 853 - 861
  • [23] On the multi-dimensional skew Brownian motion
    Atar, Rami
    Budhiraja, Amarjit
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (05) : 1911 - 1925
  • [24] SKEW BROWNIAN MOTION AND COMPLEXITY OF THE ALPS ALGORITHM
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    Tawn, Nicholas G.
    JOURNAL OF APPLIED PROBABILITY, 2022, 59 (03) : 777 - 796
  • [25] EFFECTIVE CONDUCTIVITY AND SKEW BROWNIAN-MOTION
    LANG, R
    JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (1-2) : 125 - 146
  • [26] TWO CONSISTENT ESTIMATORS FOR THE SKEW BROWNIAN MOTION
    Lejay, Antoine
    Mordecki, Ernesto
    Torres, Soledad
    ESAIM-PROBABILITY AND STATISTICS, 2019, 23 : 567 - 583
  • [27] ON THE LOCAL TIME OF THE BROWNIAN MOTION
    Takacs, Lajos
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (03) : 741 - 756
  • [28] Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, II
    Roynette, Bernard
    Vallois, Pierre
    Yor, Marc
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2006, 43 (03) : 295 - 360
  • [29] Some properties of a multifractional Brownian motion
    Lin, Zhengyan
    Zheng, Jing
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (07) : 687 - 692
  • [30] SECOND ERRATA TO "OCCUPATION AND LOCAL TIMES FOR SKEW BROWNIAN MOTION WITH APPLICATIONS TO DISPERSION ACROSS AN INTERFACE"
    Appuhamillage, Thilanka
    Bokil, Vrushali
    Thomann, Enrique
    Waymire, Edward
    Wood, Brian
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (06) : 5842 - 5844