共 50 条
Molecular engineering of indoline based organic sensitizers for highly efficient dye-sensitized solar cells
被引:92
|作者:
Liu, Bo
[1
,3
,4
]
Liu, Qingbin
[1
]
You, Dan
[1
]
Li, Xiaoyan
[1
]
Naruta, Yoshinori
[3
,4
]
Zhu, Weihong
[2
]
机构:
[1] Hebei Normal Univ, Coll Chem & Mat Sci, Shijiazhuang 050023, Peoples R China
[2] E China Univ Sci & Technol, Shanghai Key Lab Funct Mat Chem, Key Lab Adv Mat, Inst Fine Chem, Shanghai 200237, Peoples R China
[3] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8128581, Japan
[4] Kyushu Univ, Inst Mat Chem & Engn, Fukuoka 8128581, Japan
基金:
中国国家自然科学基金;
关键词:
CHARGE-TRANSFER;
CONVERSION-EFFICIENCY;
ELECTRON-TRANSFER;
COUMARIN-DYE;
CARBAZOLE;
DESIGN;
PHOTOCURRENT;
PERFORMANCE;
DONOR;
RECOMBINATION;
D O I:
10.1039/c2jm31704d
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The increasing electron-donating ability of the donor part is focused to further optimize the light-harvesting capability. Our strategy is to introduce an additional donor group into the indoline unit in the donor part to form a donor-donor structure (D-D moiety). Three different units (carbazole, fluorene and 4-methylphenyl groups) with different degrees of electron-donating capability are incorporated, thus constructing the specific donor-donor-pi-acceptor (D-D-pi-A) system (C-CA, F-CA and I-3) and giving a systematic view of the absorption evolution. Through molecular engineering, their light-harvesting capabilities, energy levels and photovoltaic performances were studied. As expected, utilizing strong electron-donating carbazole unit as additional donor, the IPCE spectrum of DSSC based on C-CA is successfully broadened to NIR region on the premise of suitable LUMO level, with an extraordinarily high plateau in visible region till around 700 nm. In the system of C-CA and F-CA, the introduction of n-pentyl group in donor part of carbazole and fluorene unit has little effect on preventing the molecular pi-aggregation due to the good co-planarity of pi-linker (vinyl thiophene), suggesting that the most effective way to prevent pi-aggregation is still the incorporation of long alkyl groups into planar pi-linker segment. However, the introducing long alkyl group can effectively prevent the electron recombination between electrons in conduction band (CB) of TiO2 and I-3- ions. Along with the preferable light-harvesting capability, C-CA presents excellent IPCE performance with a short-circuit photocurrent (J(sc)) of 18.53 mA cm(-2), an open-circuit photovoltage (V-oc) of 649 mV, a fill factor of 0.71, corresponding to a power conversion efficiency (eta) of 8.49%. The internal relations between chemical structure and conversion efficiency provide a strategy for developing highly efficient organic sensitizers working in whole visible region with high photovoltaic performance.
引用
收藏
页码:13348 / 13356
页数:9
相关论文