Multitube Helical-Waveguide Gyrotron Traveling-Wave Amplifier: Device Concept and Electron-Optical System Modeling

被引:9
作者
Samsonov, S. V. [1 ]
Leshcheva, K. A. [1 ,2 ]
Manuilov, V. N. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
[2] NI Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia
基金
俄罗斯科学基金会;
关键词
Cusp electron gun; electron-optical system; gyrotron traveling-wave amplifier (gyro-TWA); gyrotron traveling-wave tube (gyro-TWT); helically corrugated waveguide (HCW); magnetron-injection gun (MIG); multiple-beam device; MILLIMETER; TWT; BEAM; TUBE; GUN;
D O I
10.1109/TED.2020.3001491
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multitube configuration for a gyrotron traveling-wave amplifier (gyro-TWA) that is based on the use of one multibeam electron gun and several parallel helically corrugated interaction waveguides operating with axis-encircling-like electron beamlets at the second cyclotron harmonic is proposed. This new gyro-TWA concept, similar to that for multibeam or clustered linear-beam klystrons, can provide a multifold decrease in the thermal loading and increase in the RF breakdown strength for each tube at the same average or pulse output powers or a significant increase in the output power at a moderate level of the mentioned factors. It is shown that the multibeam electron flow appropriate for such a multitube gyro-TWA can be formed by a single magnetron-injection gun (MIG) using selectively emitting regions on the cathode. In some cases, such a gun can be less sensitive to the influence of space-charge forces and other disturbing factors and generate a beam of better quality than a single-beam cusp gun. In particular, a gun for the ten-tube W-band gyro-TWA, which ensures generation of a beam with a total power of about 1.3 MW, a pitch factor from 1.2 to 1.5, and a root-mean-square (rms) transverse velocity spread of about 8%, was designed and numerically modeled.
引用
收藏
页码:3385 / 3390
页数:6
相关论文
共 49 条
[1]  
[Anonymous], JOINT 32 INT C INFR
[2]  
Boyd M. R., 1962, IRE T ELECT DEVICES, V9, P247, DOI DOI 10.1109/T-ED.1962.14979
[3]   Large-Orbit Gyrotron Operation in the Terahertz Frequency Range [J].
Bratman, V. L. ;
Kalynov, Yu. K. ;
Manuilov, V. N. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[4]   Moderately relativistic high-harmonic gyrotrons for millimeter submillimeter wavelength band [J].
Bratman, VL ;
Fedotov, AE ;
Kalynov, YK ;
Manuilov, VN ;
Ofitserov, MM ;
Samsonov, SV ;
Savilov, AV .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1999, 27 (02) :456-461
[5]   High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide [J].
Bratman, VL ;
Cross, AW ;
Denisov, GG ;
He, W ;
Phelps, ADR ;
Ronald, K ;
Samsonov, SV ;
Whyte, CG ;
Young, AR .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2746-2749
[6]   A WIDE-BAND MILLIMETER-WAVE GYROTRON TRAVELING-WAVE AMPLIFIER EXPERIMENT [J].
CHU, KR ;
BARNETT, LR ;
LAU, WK ;
CHANG, LH ;
CHEN, HY .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1990, 37 (06) :1557-1560
[7]   The electron cyclotron maser [J].
Chu, KR .
REVIEWS OF MODERN PHYSICS, 2004, 76 (02) :489-540
[8]  
Denisov GG, 2019, INT CONF INFRA MILLI, DOI [10.1109/irmmw-thz.2019.8874168, 10.1109/irmmw-thz.2019.8874359]
[9]   Gyro-TWT with a helical operating waveguide: New possibilities to enhance efficiency and frequency bandwidth [J].
Denisov, GG ;
Bratman, VL ;
Phelps, ADR ;
Samsonov, SV .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26 (03) :508-518
[10]   A cusp electron gun for millimeter wave gyrodevices [J].
Donaldson, C. R. ;
He, W. ;
Cross, A. W. ;
Li, F. ;
Phelps, A. D. R. ;
Zhang, L. ;
Ronald, K. ;
Robertson, C. W. ;
Whyte, C. G. ;
Young, A. R. .
APPLIED PHYSICS LETTERS, 2010, 96 (14)