RIGOROUS UPSCALING OF UNSATURATED FLOW IN FRACTURED POROUS MEDIA

被引:28
作者
List, Florian [1 ,2 ]
Kumar, Kundan [3 ,4 ]
Pop, Iuliu Sorin [2 ,4 ]
Radu, Florin Adrian [4 ]
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW, Australia
[2] Univ Hasselt, Dept Math, BE-3590 Diepenbeek, Belgium
[3] Karlstad Univ, Dept Math, Karlstad, Sweden
[4] Univ Bergen, Dept Math, N-5007 Bergen, Norway
关键词
Richards' equation; fractured porous media; upscaling; unsaturated flow in porous media; existence and uniqueness of weak solutions; EFFECTIVE TRANSMISSION CONDITIONS; 2-PHASE FLOW; PARABOLIC EQUATION; FILLED FRACTURES; COUPLED FLOW; MODEL; DISCRETIZATION; APPROXIMATION; CONVERGENCE; INTERFACE;
D O I
10.1137/18M1203754
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider a mathematical model for flow in an unsaturated porous medium containing a fracture. In all subdomains (the fracture and the adjacent matrix blocks) the flow is governed by Richards' equation. The submodels are coupled by physical transmission conditions expressing the continuity of the normal fluxes and of the pressures. We start by analyzing the case of a fracture having a fixed width-length ratio, called epsilon > 0. Then we take the limit epsilon -> 0 and give a rigorous proof for the convergence toward effective models. This is done in different regimes, depending on how the ratio of porosities and permeabilities in the fracture, respectively, in the matrix, scale in terms of epsilon, and leads to a variety of effective models. Numerical simulations confirm the theoretical upscaling results.
引用
收藏
页码:239 / 276
页数:38
相关论文
共 71 条
[21]   Error estimates for a class of degenerate parabolic equations [J].
Ebmeyer, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (03) :1095-1112
[22]   The finite volume method for Richards equation [J].
Eymard, R ;
Gutnic, M ;
Hilhorst, D .
COMPUTATIONAL GEOSCIENCES, 1999, 3 (3-4) :259-294
[23]  
Eymard R, 2006, NUMER MATH, V105, P73, DOI [10.1007/s00211-006-0036-z, 10.1007/S00211-006-0036-z]
[24]   Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation [J].
Eymard, Robert ;
Guichard, Cindy ;
Herbin, Raphaele ;
Masson, Roland .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (7-8) :560-585
[25]   NUMERICAL ANALYSIS OF DARCY PROBLEM ON SURFACES [J].
Ferroni, Alberto ;
Formaggia, Luca ;
Fumagalli, Alessio .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06) :1615-1630
[26]   A REDUCED MODEL FOR DARCY'S PROBLEM IN NETWORKS OF FRACTURES [J].
Formaggia, Luca ;
Fumagalli, Alessio ;
Scotti, Anna ;
Ruffo, Paolo .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04) :1089-1116
[27]   EFFECTIVE INTERFACE CONDITIONS FOR PROCESSES THROUGH THIN HETEROGENEOUS LAYERS WITH NONLINEAR TRANSMISSION AT THE MICROSCOPIC BULK-LAYER INTERFACE [J].
Gahn, Markus ;
Neuss-Radu, Maria ;
Knabner, Peter .
NETWORKS AND HETEROGENEOUS MEDIA, 2018, 13 (04) :609-640
[28]   DERIVATION OF EFFECTIVE TRANSMISSION CONDITIONS FOR DOMAINS SEPARATED BY A MEMBRANE FOR DIFFERENT SCALING OF MEMBRANE DIFFUSIVITY [J].
Gahn, Markus ;
Neuss-Radu, Maria ;
Knabner, Peter .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (04) :773-797
[29]   Discrete fracture model for coupled flow and geomechanics [J].
Garipov, T. T. ;
Karimi-Fard, M. ;
Tchelepi, H. A. .
COMPUTATIONAL GEOSCIENCES, 2016, 20 (01) :149-160
[30]  
Gilbarg D., 1998, ELLIPTIC PARTIAL DIF