Matrix Ap Weights, Degenerate Sobolev Spaces, and Mappings of Finite Distortion

被引:0
|
作者
Cruz-Uribe, David [1 ]
Moen, Kabe [1 ]
Rodney, Scott [2 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Cape Breton Univ, Dept Math Phys & Geol, Sydney, NS B1P6L2, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Matrix A(p); Degenerate Sobolev spaces; Mappings of finite distortion; MAXIMAL FUNCTIONS; WEAK SOLUTIONS; BESOV-SPACES; EQUATIONS; INEQUALITIES; REGULARITY; BASES;
D O I
10.1007/s12220-015-9649-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study degenerate Sobolev spaces where the degeneracy is controlled by a matrix weight. This class of weights was introduced by Nazarov, Treil and Volberg, and degenerate Sobolev spaces with matrix weights have been considered by several authors for their applications to PDEs. We prove that the classical Meyers-Serrin theorem, , holds in this setting. As applications we prove partial regularity results for weak solutions of degenerate p-Laplacian equations, and in particular for mappings of finite distortion.
引用
收藏
页码:2797 / 2830
页数:34
相关论文
共 50 条
  • [21] Exponential integrability of mappings of finite distortion
    Akkinen, Tuomo
    Rajala, Kai
    REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (04) : 1459 - 1476
  • [22] Lectures on Mappings of Finite Distortion Preface
    Hencl, Stanislav
    Koskela, Pekka
    LECTURES ON MAPPINGS OF FINITE DISTORTION, 2014, 2096 : V - +
  • [23] Mappings of Finite Distortion of Polynomial Type
    Guo, Changyu
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) : 1052 - 1063
  • [24] Orlicz-Sobolev regularity of mappings with subexponentially integrable distortion
    Clop, Albert
    Koskela, Pekka
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2009, 20 (04) : 301 - 326
  • [25] Embeddings of weighted Sobolev spaces and degenerate elliptic problems
    Guo, ZongMing
    Mei, LinFeng
    Wan, FangShu
    Guan, XiaoHong
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (08) : 1399 - 1418
  • [26] Matrix weights and regularity for degenerate elliptic equations
    Di Fazio, Giuseppe
    Fanciullo, Maria Stella
    Monticelli, Dario Daniele
    Rodney, Scott
    Zamboni, Pietro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 237
  • [27] Existence of Solutions for Some Quasilinear Degenerate Elliptic Inclusions in Weighted Sobolev Spaces
    Cheng, Yi
    Li, Cuiying
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (01) : 40 - 50
  • [28] Mappings of finite distortion: Size of the branch set
    Guo, Chang-Yu
    Hencl, Stanislav
    Tengvall, Ville
    ADVANCES IN CALCULUS OF VARIATIONS, 2020, 13 (04) : 325 - 360
  • [29] Radial Limits of Mappings of Bounded and Finite Distortion
    Akkinen, Tuomo
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (03) : 1298 - 1322
  • [30] Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces I: Ap-dimensions of matrix weights and'-transform characterizations
    Bu, Fan
    Hytonen, Tuomas
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ANNALEN, 2025,