Elemental Abundances in M31: A Comparative Analysis of Alpha and Iron Element Abundances in the the Outer Disk, Giant Stellar Stream, and Inner Halo of M31

被引:37
作者
Escala, Ivanna [1 ,2 ]
Gilbert, Karoline M. [3 ,4 ]
Kirby, Evan N. [1 ]
Wojno, Jennifer [4 ]
Cunningham, Emily C. [5 ]
Guhathakurta, Puragra [6 ]
机构
[1] CALTECH, Dept Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[2] Princeton Univ, Dept Astrophys Sci, 4 Ivy Ln, Princeton, NJ 08544 USA
[3] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Bloomberg Ctr Phys & Astron, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA
[5] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA
[6] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
STAR-FORMATION HISTORY; TRACING GALAXY FORMATION; COLD DARK-MATTER; MILKY-WAY; METAL-POOR; CHEMICAL ABUNDANCES; ANDROMEDA STREAM; GALACTIC HALO; SPLASH SURVEY; DUAL ORIGIN;
D O I
10.3847/1538-4357/ab6659
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We measured [Fe/H] and [alpha/Fe] using spectral synthesis of low-resolution stellar spectroscopy for 70 individual red-giant-branch stars across four fields spanning the outer disk, Giant Stellar Stream (GSS), and inner halo of M31. Fields at M31-centric projected distances of 23 kpc in the halo, 12 kpc in the halo, 22 kpc in the GSS, and 26 kpc in the outer disk are alpha-enhanced, with <[alpha/Fe]> = 0.43, 0.50, 0.41, and 0.58, respectively. The 23 and 12 kpc halo fields are relatively metal-poor, with <[Fe/H]> = -1.54 and -1.30, whereas the 22 kpc GSS and 26 kpc outer disk fields are relatively metal-rich with <[Fe/H]> = -0.84 and -0.92, respectively. For fields with substructure, we separated the stellar populations into kinematically hot stellar halo components and kinematically cold components. We did not find any evidence of a radial [alpha/Fe] gradient along the high surface brightness core of the GSS between similar to 17 and 22 kpc. However, we found tentative suggestions of a negative radial [alpha/Fe] gradient in the stellar halo, which may indicate that different progenitor(s) or formation mechanisms contributed to the build up of the inner versus outer halo. Additionally, the [alpha/Fe] distribution of the metal-rich ([Fe/H] > -1.5), smooth inner stellar halo (r(proj) less than or similar to 26 kpc) is inconsistent with having formed from the disruption of a progenitor(s) similar to present-day M31 satellite galaxies. The 26 kpc outer disk is most likely associated with the extended disk of M31, where its high alpha-enhancement provides support for an episode of rapid star formation in M31's disk possibly induced by a major merger.y
引用
收藏
页数:24
相关论文
共 167 条
[1]   Simulations of galaxy formation in a cold dark matter universe. II. The fine structure of simulated galactic disks [J].
Abadi, MG ;
Navarro, JF ;
Steinmetz, M ;
Eke, VR .
ASTROPHYSICAL JOURNAL, 2003, 597 (01) :21-34
[2]   Kinematics and chemical properties of the Galactic stellar populations The HARPS FGK dwarfs sample [J].
Adibekyan, V. Zh. ;
Figueira, P. ;
Santos, N. C. ;
Hakobyan, A. A. ;
Sousa, S. G. ;
Pace, G. ;
Mena, E. Delgado ;
Robin, A. C. ;
Israelian, G. ;
Hernandez, J. I. Gonzalez .
ASTRONOMY & ASTROPHYSICS, 2013, 554
[3]   THE STELLAR METALLICITY DISTRIBUTION FUNCTION OF THE GALACTIC HALO FROM SDSS PHOTOMETRY [J].
An, Deokkeun ;
Beers, Timothy C. ;
Johnson, Jennifer A. ;
Pinsonneault, Marc H. ;
Lee, Young Sun ;
Bovy, Jo ;
Ivezic, Zeljko ;
Carollo, Daniela ;
Newby, Matthew .
ASTROPHYSICAL JOURNAL, 2013, 763 (01)
[4]   Chemodynamics of the Milky Way I. The first year of APOGEE data [J].
Anders, F. ;
Chiappini, C. ;
Santiago, B. X. ;
Rocha-Pinto, H. J. ;
Girardi, L. ;
da Costa, L. N. ;
Maia, M. A. G. ;
Steinmetz, M. ;
Minchev, I. ;
Schultheis, M. ;
Boeche, C. ;
Miglio, A. ;
Montalban, J. ;
Schneider, D. P. ;
Beers, T. C. ;
Cunha, K. ;
Allende Prieto, C. ;
Balbinot, E. ;
Bizyaev, D. ;
Brauer, D. E. ;
Brinkmann, J. ;
Frinchaboy, P. M. ;
Perez, A. E. Garcia ;
Hayden, M. R. ;
Hearty, F. R. ;
Holtzman, J. ;
Johnson, J. A. ;
Kinemuchi, K. ;
Majewski, S. R. ;
Malanushenko, E. ;
Malanushenko, V. ;
Nidever, D. L. ;
O'Connell, R. W. ;
Pan, K. ;
Robin, A. C. ;
Schiavon, R. P. ;
Shetrone, M. ;
Skrutskie, M. F. ;
Smith, V. V. ;
Stassun, K. ;
Zasowski, G. .
ASTRONOMY & ASTROPHYSICS, 2014, 564
[5]  
[Anonymous], 2019, ASTROPHYS J, DOI DOI 10.3847/1538-4357/AB5115
[6]  
[Anonymous], 2016, APJ, DOI DOI 10.3847/0004-637X/827/1/82
[7]  
[Anonymous], 2018, ASTROPHYS J, DOI DOI 10.3847/1538-4357/AAE8E7
[8]  
[Anonymous], APJ
[9]  
[Anonymous], 2018, APJ, DOI DOI 10.3847/1538-4357/AA9F26
[10]  
[Anonymous], APJ