Creeping fronts in degenerate reaction-diffusion systems

被引:9
作者
Heinze, S
Schweizer, B
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Inst Angew Math, D-69120 Heidelberg, Germany
关键词
D O I
10.1088/0951-7715/18/6/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study systems of reaction-diffusion type for two species in one space dimension and investigate the dynamics in the case where the second species does not diffuse. We consider competing species with two stable equilibria and front solutions that connect the two stable states. A free energy function determines a preferred state. If the diffusive species is preferred, travelling waves may appear. Instead, if the non-diffusive species is preferred, stationary fronts are the only monotone travelling waves. We show that these fronts are unstable and that the non-diffusive species can propagate at a logarithmic rate.
引用
收藏
页码:2455 / 2476
页数:22
相关论文
共 9 条
[1]  
Aronson D. G., 1975, LECT NOTES MATH, V446, P5
[2]   A DENSITY-DEPENDENT DIFFUSION SYSTEM WITH STABLE DISCONTINUOUS STATIONARY SOLUTIONS [J].
ARONSON, DG ;
TESEI, A ;
WEINBERGER, H .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 152 :259-280
[3]  
FIFE PC, 1977, ARCH RATION MECH AN, V65, P335, DOI 10.1007/BF00250432
[4]   Diffusion-advection in cellular flows with large Peclet numbers [J].
Heinze, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 168 (04) :329-342
[5]  
HEINZE S, 2004, 200403 U HEID
[6]   SINGULAR PERTURBATION APPROACH TO TRAVELING WAVES IN COMPETING AND DIFFUSING SPECIES MODELS [J].
HOSONO, Y ;
MIMURA, M .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1982, 22 (03) :435-461
[7]  
LUCKHAUS S, 2004, IN PRESS REND ACC LI, V15
[8]  
Protter M.H., 1967, MAXIMUM PRINCIPLE DI
[9]  
Volpert A., 1994, Translation of Mathematical Monographs, V140