Quantum compression of tensor network states

被引:7
作者
Bai, Ge [1 ]
Yang, Yuxiang [2 ]
Chiribella, Giulio [1 ,3 ,4 ,5 ]
机构
[1] Univ Hong Kong, Dept Comp Sci, Pokfulam Rd, Hong Kong, Peoples R China
[2] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[3] Univ Oxford, Dept Comp Sci, Wolfson Bldg,Parks Rd, Oxford, England
[4] HKU Shenzhen Inst Res & Innovat, Kejizhong 2nd Rd, Shenzhen, Peoples R China
[5] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
基金
中国国家自然科学基金; 瑞士国家科学基金会;
关键词
quantum data compression; tensor networks; matrix product states; quantum machine learning; quantum many-body systems; ENSEMBLES; UNIVERSAL;
D O I
10.1088/1367-2630/ab7a34
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We design quantum compression algorithms for parametric families of tensor network states. We first establish an upper bound on the amount of memory needed to store an arbitrary state from a given state family. The bound is determined by the minimum cut of a suitable flow network, and is related to the flow of information from the manifold of parameters that specify the states to the physical systems in which the states are embodied. For given network topology and given edge dimensions, our upper bound is tight when all edge dimensions are powers of the same integer. When this condition is not met, the bound is optimal up to a multiplicative factor smaller than 1.585. We then provide a compression algorithm for general state families, and show that the algorithm runs in polynomial time for matrix product states.
引用
收藏
页数:29
相关论文
共 69 条
[51]  
Perez-Garcia D, 2007, QUANTUM INF COMPUT, V7, P401
[52]   Efficient compression of quantum information [J].
Plesch, Martin ;
Buzek, Vladimir .
PHYSICAL REVIEW A, 2010, 81 (03)
[53]   Critical current and vortex dynamics in single crystals of Ca(Fe1-xCox)2As2 [J].
Pramanik, A. K. ;
Harnagea, L. ;
Singh, S. ;
Aswartham, S. ;
Behr, G. ;
Wurmehl, S. ;
Hess, C. ;
Klingeler, R. ;
Buechner, B. .
PHYSICAL REVIEW B, 2010, 82 (01)
[54]   A one-way quantum computer [J].
Raussendorf, R ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5188-5191
[55]   Quantum Data Compression of a Qubit Ensemble [J].
Rozema, Lee A. ;
Mahler, Dylan H. ;
Hayat, Alex ;
Turner, Peter S. ;
Steinberg, Aephraim M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (16)
[56]   QUANTUM CODING [J].
SCHUMACHER, B .
PHYSICAL REVIEW A, 1995, 51 (04) :2738-2747
[57]   Classical simulation of quantum many-body systems with a tree tensor network [J].
Shi, Y. -Y. ;
Duan, L. -M. ;
Vidal, G. .
PHYSICAL REVIEW A, 2006, 74 (02)
[58]   Tensor network states and algorithms in the presence of a global U(1) symmetry [J].
Singh, Sukhwinder ;
Pfeifer, Robert N. C. ;
Vidal, Guifre .
PHYSICAL REVIEW B, 2011, 83 (11)
[59]   Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems [J].
Verstraete, F. ;
Murg, V. ;
Cirac, J. I. .
ADVANCES IN PHYSICS, 2008, 57 (02) :143-224
[60]   Criticality, the area law, and the computational power of projected entangled pair states [J].
Verstraete, F. ;
Wolf, M. M. ;
Perez-Garcia, D. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2006, 96 (22)