Quantum compression of tensor network states

被引:7
作者
Bai, Ge [1 ]
Yang, Yuxiang [2 ]
Chiribella, Giulio [1 ,3 ,4 ,5 ]
机构
[1] Univ Hong Kong, Dept Comp Sci, Pokfulam Rd, Hong Kong, Peoples R China
[2] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[3] Univ Oxford, Dept Comp Sci, Wolfson Bldg,Parks Rd, Oxford, England
[4] HKU Shenzhen Inst Res & Innovat, Kejizhong 2nd Rd, Shenzhen, Peoples R China
[5] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
基金
中国国家自然科学基金; 瑞士国家科学基金会;
关键词
quantum data compression; tensor networks; matrix product states; quantum machine learning; quantum many-body systems; ENSEMBLES; UNIVERSAL;
D O I
10.1088/1367-2630/ab7a34
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We design quantum compression algorithms for parametric families of tensor network states. We first establish an upper bound on the amount of memory needed to store an arbitrary state from a given state family. The bound is determined by the minimum cut of a suitable flow network, and is related to the flow of information from the manifold of parameters that specify the states to the physical systems in which the states are embodied. For given network topology and given edge dimensions, our upper bound is tight when all edge dimensions are powers of the same integer. When this condition is not met, the bound is optimal up to a multiplicative factor smaller than 1.585. We then provide a compression algorithm for general state families, and show that the algorithm runs in polynomial time for matrix product states.
引用
收藏
页数:29
相关论文
共 69 条
[11]   Compressed simulation of evolutions of the XY model [J].
Boyajian, W. L. ;
Murg, V. ;
Kraus, B. .
PHYSICAL REVIEW A, 2013, 88 (05)
[12]  
Bravyi SB., 1998, Quantum codes on a lattice with boundary
[13]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[14]   Optimal universal and state-dependent quantum cloning [J].
Bruss, D ;
DiVincenzo, DP ;
Ekert, A ;
Fuchs, CA ;
Macchiavello, C ;
Smolin, JA .
PHYSICAL REVIEW A, 1998, 57 (04) :2368-2378
[15]   Ergodic and mixing quantum channels in finite dimensions [J].
Burgarth, D. ;
Chiribella, G. ;
Giovannetti, V. ;
Perinotti, P. ;
Yuasa, K. .
NEW JOURNAL OF PHYSICS, 2013, 15
[16]   The generalized Lyapunov theorem and its application to quantum channels [J].
Burgarth, Daniel ;
Giovannetti, Vittorio .
NEW JOURNAL OF PHYSICS, 2007, 9
[17]   Frames containing a Riesz basis and preservation of this property under perturbations [J].
Casazza, PG ;
Christensen, O .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) :266-278
[18]   Universal Superreplication of Unitary Gates [J].
Chiribella, G. ;
Yang, Y. ;
Huang, C. .
PHYSICAL REVIEW LETTERS, 2015, 114 (12)
[19]   Entanglement spectrum and boundary theories with projected entangled-pair states [J].
Cirac, J. Ignacio ;
Poilblanc, Didier ;
Schuch, Norbert ;
Verstraete, Frank .
PHYSICAL REVIEW B, 2011, 83 (24)
[20]   Renormalization and tensor product states in spin chains and lattices [J].
Cirac, J. Ignacio ;
Verstraete, Frank .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)