Quantum compression of tensor network states

被引:7
作者
Bai, Ge [1 ]
Yang, Yuxiang [2 ]
Chiribella, Giulio [1 ,3 ,4 ,5 ]
机构
[1] Univ Hong Kong, Dept Comp Sci, Pokfulam Rd, Hong Kong, Peoples R China
[2] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[3] Univ Oxford, Dept Comp Sci, Wolfson Bldg,Parks Rd, Oxford, England
[4] HKU Shenzhen Inst Res & Innovat, Kejizhong 2nd Rd, Shenzhen, Peoples R China
[5] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
基金
中国国家自然科学基金; 瑞士国家科学基金会;
关键词
quantum data compression; tensor networks; matrix product states; quantum machine learning; quantum many-body systems; ENSEMBLES; UNIVERSAL;
D O I
10.1088/1367-2630/ab7a34
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We design quantum compression algorithms for parametric families of tensor network states. We first establish an upper bound on the amount of memory needed to store an arbitrary state from a given state family. The bound is determined by the minimum cut of a suitable flow network, and is related to the flow of information from the manifold of parameters that specify the states to the physical systems in which the states are embodied. For given network topology and given edge dimensions, our upper bound is tight when all edge dimensions are powers of the same integer. When this condition is not met, the bound is optimal up to a multiplicative factor smaller than 1.585. We then provide a compression algorithm for general state families, and show that the algorithm runs in polynomial time for matrix product states.
引用
收藏
页数:29
相关论文
共 69 条
[1]  
Affleck I., 2004, CONDENS MATTER PHYS, P249, DOI DOI 10.1007/978-3-662-06390-3_18
[2]  
[Anonymous], 2016, ARXIV160602734
[3]  
Arad I, 2013, ARXIV13011162
[4]  
Bacon D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1235
[5]   Efficient quantum circuits for Schur and Clebsch-Gordan transforms [J].
Bacon, Dave ;
Chuang, Isaac L. ;
Harrow, Aram W. .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[6]   On quantum coding for ensembles of mixed states [J].
Barnum, H ;
Caves, CM ;
Fuchs, CA ;
Jozsa, R ;
Schumacher, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6767-6785
[7]   Demonstration of Blind Quantum Computing [J].
Barz, Stefanie ;
Kashefi, Elham ;
Broadbent, Anne ;
Fitzsimons, Joseph F. ;
Zeilinger, Anton ;
Walther, Philip .
SCIENCE, 2012, 335 (6066) :303-308
[8]   Efficient distributed quantum computing [J].
Beals, Robert ;
Brierley, Stephen ;
Gray, Oliver ;
Harrow, Aram W. ;
Kutin, Samuel ;
Linden, Noah ;
Shepherd, Dan ;
Stather, Mark .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2153)
[9]   Nonlinear Quantum Metrology of Many-Body Open Systems [J].
Beau, M. ;
del Campo, A. .
PHYSICAL REVIEW LETTERS, 2017, 119 (01)
[10]   Compressed simulation of thermal and excited states of the one-dimensional XY model [J].
Boyajian, W. L. ;
Kraus, B. .
PHYSICAL REVIEW A, 2015, 92 (03)