Heating ability of magnetic nanoparticles with cubic and combined anisotropy

被引:28
|
作者
Usov, Nikolai A. [1 ,2 ,3 ]
Nesmeyanov, Mikhail S. [2 ]
Gubanova, Elizaveta M. [3 ]
Epshtein, Natalia B. [3 ]
机构
[1] Natl Univ Sci & Technol MISIS, Moscow 119049, Russia
[2] Russian Acad Sci, Pushkov Inst Terr Magnetism Ionosphere & Radio Wa, IZMIRAN, Troitsk 108480, Russia
[3] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
关键词
fractal clusters; magnetite nanoparticles; magneto-dipole interaction; numerical simulation; specific absorption rate; IRON-OXIDE NANOPARTICLES; HYPERTHERMIA RESPONSE; AGGREGATION; EFFICIENCY; NANOCUBES;
D O I
10.3762/bjnano.10.29
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The low frequency hysteresis loops and specific absorption rate (SAR) of assemblies of magnetite nanoparticles with cubic anisotropy are calculated in the diameter range of D = 20-60 nm taking into account both thermal fluctuations of the particle magnetic moments and strong magneto-dipole interaction in assemblies of fractal-like clusters of nanoparticles. Similar calculations are also performed for assemblies of slightly elongated magnetite nanoparticles having combined magnetic anisotropy. A substantial dependence of the SAR on the nanoparticle diameter is obtained for all cases investigated. Due to the influence of the magneto-dipole interaction, the SAR of fractal clusters of nanoparticles decreases considerably in comparison with that for weakly interacting nanoparticles. However, the ability of magnetic nanoparticle assemblies to generate heat can be improved if the nanoparticles are covered by nonmagnetic shells of appreciable thickness.
引用
收藏
页码:305 / 314
页数:10
相关论文
共 50 条
  • [21] To heat or not to heat: a study of the performances of iron carbide nanoparticles in magnetic heating
    Asensio, Juan M.
    Marbaix, Julien
    Mille, Nicolas
    Lacroix, Lise-Marie
    Soulantica, Katerina
    Fazzini, Pier-Francesco
    Carrey, Julian
    Chaudret, Bruno
    NANOSCALE, 2019, 11 (12) : 5402 - 5411
  • [22] Measuring the heating power of magnetic nanoparticles: an overview of currently used methods
    Lemal, Philipp
    Geers, Christoph
    Rothen-Rutishauser, Barbara
    Lattuada, Marco
    Petri-Fink, Alke
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 : S107 - S117
  • [23] Magnetic heating of interacting nanoparticles under different driving field waveforms
    Ortega-Julia, J.
    Ortega, D.
    Leliaert, J.
    APPLIED PHYSICS LETTERS, 2024, 125 (12)
  • [24] Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles
    Salas, Gorka
    Camarero, Julio
    Cabrera, David
    Takacs, Helene
    Varela, Maria
    Ludwig, Robert
    Daehring, Heidi
    Hilger, Ingrid
    Miranda, Rodolfo
    del Puerto Morales, Maria
    Jose Teran, Francisco
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (34) : 19985 - 19994
  • [25] Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One
    Ovejero, Jesus G.
    Spizzo, Federico
    Morales, M. Puerto
    Del Bianco, Lucia
    MATERIALS, 2021, 14 (21)
  • [26] Role of Dipolar Interactions on the Determination of the Effective Magnetic Anisotropy in Iron Oxide Nanoparticles
    Garcia-Acevedo, Pelayo
    Gonzalez-Gomez, Manuel A.
    Arnosa-Prieto, Angela
    de Castro-Alves, Lisandra
    Pineiro, Yolanda
    Rivas, Jose
    ADVANCED SCIENCE, 2023, 10 (05)
  • [27] Efficiency of Heating Magnetite Nanoparticles with Different Surface Morphologies for the Purpose of Magnetic Hyperthermia
    O. E. Polozhentsev
    A. V. Soldatov
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 799 - 805
  • [28] Mechanism of magnetic heating in Mn-doped magnetite nanoparticles and the role of intertwined structural and magnetic properties
    Del Bianco, L.
    Spizzo, F.
    Barucca, G.
    Ruggiero, M. R.
    Crich, S. Geninatti
    Forzan, M.
    Sieni, E.
    Sgarbossa, P.
    NANOSCALE, 2019, 11 (22) : 10896 - 10910
  • [29] Efficiency of Heating Magnetite Nanoparticles with Different Surface Morphologies for the Purpose of Magnetic Hyperthermia
    Polozhentsev, O. E.
    Soldatov, A. V.
    JOURNAL OF SURFACE INVESTIGATION, 2021, 15 (04): : 799 - 805
  • [30] Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy
    Glover, Amanda L.
    Bennett, James B.
    Pritchett, Jeremy S.
    Nikles, Sarah M.
    Nikles, David E.
    Nikles, Jacqueline A.
    Brazel, Christopher S.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (01) : 231 - 235