Electrical Conductivity Modeling of Graphene-based Conductor Materials

被引:52
作者
Rizzi, Leo [1 ,3 ]
Zienert, Andreas [1 ,2 ]
Schuster, Jorg [2 ]
Koehne, Martin [3 ]
Schulz, Stefan E. [1 ,2 ]
机构
[1] TU Chemnitz, Fac Elect Engn & Informat Technol, Reichenhainer Str 70, D-09126 Chemnitz, Germany
[2] Fraunhofer ENAS, Technol Campus 3, D-09126 Chemnitz, Germany
[3] Robert Bosch GmbH, Robert Bosch Campus 1, D-71272 Renningen, Germany
关键词
graphene; nanocomposites; electrical conductivity; network simulation; conductor materials; FIBER; COPPER;
D O I
10.1021/acsami.8b16361
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene-based conductors such as films and fibers aim to transfer graphene's extraordinary properties to the macroscopic scale. They show great potential for large-scale applications, but there is a lack of theoretical models to describe their electrical characteristics. We present a network simulation method to model the electrical conductivity of graphene-based conductors. The method considers all of the relevant microscopic parameters such as graphene flake conductivity, interlayer conductivity, packing density, and flake size. To provide a mathematical framework, we derive an analytical expression, which reproduces the essential features of the network model. We also find good agreement with experimental data. Our results offer production guidelines and enable the systematic optimization of high-performance graphene-based conductor materials. A generalization of the model to any conductor based on two-dimensional materials is straightforward.
引用
收藏
页码:43088 / 43094
页数:7
相关论文
共 35 条
[1]   High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles [J].
Aboutalebi, Seyed Hamed ;
Jalili, Rouhollah ;
Esrafilzadeh, Dorna ;
Salari, Maryam ;
Gholamvand, Zahra ;
Yamini, Sima Aminorroaya ;
Konstantinov, Konstantin ;
Shepherd, Roderick L. ;
Chen, Jun ;
Moulton, Simon E. ;
Innis, Peter Charles ;
Minett, Andrew I. ;
Razal, Joselito M. ;
Wallace, Gordon G. .
ACS NANO, 2014, 8 (03) :2456-2466
[2]   CONDUCTION IN ANISOTROPIC DISORDERED SYSTEMS - EFFECTIVE-MEDIUM THEORY [J].
BERNASCONI, J .
PHYSICAL REVIEW B, 1974, 9 (10) :4575-4579
[3]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[4]   MnO2-modified hierarchical graphene fiber electrochemical supercapacitor [J].
Chen, Qing ;
Meng, Yuning ;
Hu, Chuangang ;
Zhao, Yang ;
Shao, Huibo ;
Chen, Nan ;
Qu, Liangti .
JOURNAL OF POWER SOURCES, 2014, 247 :32-39
[5]   INTERCALATION COMPOUNDS OF GRAPHITE [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G .
ADVANCES IN PHYSICS, 1981, 30 (02) :139-326
[6]   Wrinkle-stabilized metal-graphene hybrid fibers with zero temperature coefficient of resistance [J].
Fang, Bo ;
Xi, Jiabin ;
Liu, Yingjun ;
Guo, Fan ;
Xu, Zhen ;
Gao, Weiwei ;
Guo, Daoyou ;
Li, Peigang ;
Gao, Chao .
NANOSCALE, 2017, 9 (33) :12178-12188
[7]   ROOM-TEMPERATURE ELECTRICAL-CONDUCTIVITY OF A HIGHLY 2-DIMENSIONAL SYNTHETIC METAL - ASF5-GRAPHITE [J].
FOLEY, GMT ;
ZELLER, C ;
FALARDEAU, ER ;
VOGEL, FL .
SOLID STATE COMMUNICATIONS, 1977, 24 (05) :371-375
[8]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[9]   Flexible high performance wet-spun graphene fiber supercapacitors [J].
Huang, Tieqi ;
Zheng, Bingna ;
Kou, Liang ;
Gopalsamy, Karthikeyan ;
Xu, Zhen ;
Gao, Chao ;
Meng, Yuena ;
Wei, Zhixiang .
RSC ADVANCES, 2013, 3 (46) :23957-23962
[10]   Ultrastrong Graphene-Copper Core-Shell Wires for High-Performance Electrical Cables [J].
Kim, Sang Jin ;
Shin, Dong Heon ;
Choi, Yong Seok ;
Rho, Hokyun ;
Park, Min ;
Moon, Byung Joon ;
Kim, Youngsoo ;
Lee, Seuoung-Ki ;
Lee, Dong Su ;
Kim, Tae-Wook ;
Lee, Sang Hyun ;
Kim, Keun Soo ;
Hong, Byung Hee ;
Bae, Sukang .
ACS NANO, 2018, 12 (03) :2803-2808