Modeling of electric vehicle batteries using RBF neural networks

被引:0
作者
Zhang, Cheng [1 ]
Yang, Zhile [1 ]
Li, Kang [1 ]
机构
[1] Queens Univ Belfast, Sch Elect Elect Engn & Comp Sci, Belfast BT9 5AH, Antrim, North Ireland
来源
2014 INTERNATIONAL CONFERENCE ON COMPUTING, MANAGEMENT AND TELECOMMUNICATIONS (COMMANTEL) | 2014年
关键词
Levenberg-Marquardt; Input selection; VARIABLE SELECTION; INPUT SELECTION; IDENTIFICATION; OPTIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electric Vehicles (EVs) are promised to significantly reduce the consumption of conventional fossil fuels in the transport sector as well as to limit the overwhelming greenhouse gas emissions. An accurate battery model is indispensable for the design of charging and discharging control of EVs. A new Radial Basis Function (RBF) modelling approach, which combines the Levenberg-Marquardt method to tune the non-linear parameters and an input selection approach for confining the number of input variables is proposed to model the batteries of EVs. Experimental results on modelling Li-ion batteries show that the resultant models have achieved high accuracy on training data and desirable generalization performance on unseen data.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 19 条
[1]  
Bonnlander B. V., 1994, 1994 International Symposium on Artificial Neural Networks. ISANN '94. Proceedings, P42
[2]   Accurate electrical battery model capable of predicting, runtime and I-V performance [J].
Chen, Min ;
Rincon-Mora, Gabriel A. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006, 21 (02) :504-511
[3]   ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION [J].
CHEN, S ;
BILLINGS, SA ;
LUO, W .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1873-1896
[4]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[5]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[6]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[7]   SIMULATION AND OPTIMIZATION OF THE DUAL LITHIUM ION INSERTION CELL [J].
FULLER, TF ;
DOYLE, M ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :1-10
[8]   Model selection approaches for non-linear system identification: a review [J].
Hong, X. ;
Mitchell, R. J. ;
Chen, S. ;
Harris, C. J. ;
Li, K. ;
Irwin, G. W. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2008, 39 (10) :925-946
[9]   Variable selection algorithm for the construction of MIMO operating point dependent neurofuzzy networks [J].
Hong, X ;
Harris, CJ .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (01) :88-101
[10]  
Kennedy James., 2010, Particle Swarm Optimization, P760