Virtual Element approximation of 2D magnetostatic problems

被引:42
作者
da Veiga, L. Beirao [1 ,2 ]
Brezzi, F. [2 ]
Dassi, F. [1 ]
Marini, L. D. [2 ,3 ]
Russo, A. [1 ,2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20153 Milan, Italy
[2] IMATI CNR, Via Ferrata 1, I-27100 Pavia, Italy
[3] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
基金
欧洲研究理事会;
关键词
Finite Element Methods; Virtual Element Methods; Magnetostatic problems; Serendipity; FINITE-VOLUME METHOD; DISCONTINUOUS GALERKIN; DISCRETE COMPACTNESS; STRATEGY; VEM; DISCRETIZATIONS; GRADIENT; H(DIV);
D O I
10.1016/j.cma.2017.08.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the use of nodal and edge Virtual Element spaces for the discretization of magnetostatic problems in two dimensions, following the variational formulation of Kikuchi. In addition, we present a novel Serendipity variant of the same spaces that allow to save many internal degrees of freedom. These Virtual Element Spaces of different type can be useful in applications where an exact sequence is particularly convenient, together with commuting-diagram interpolation operators, as is definitely the case in electromagnetic problems. We prove stability and optimal error estimates, and we check the performance with some academic numerical experiments. (C) 2017 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:173 / 195
页数:23
相关论文
共 58 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]  
[Anonymous], 2013, SERIES COMPUTATIONAL
[3]  
[Anonymous], 2008, APPL MATH NONLINEAR
[4]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[5]   Approximation by quadrilateral finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
MATHEMATICS OF COMPUTATION, 2002, 71 (239) :909-922
[6]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[7]   Quadrilateral H(div) finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2429-2451
[8]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[9]  
Arroyo M, 2007, LECT NOTES COMPUTATI, V57, P1
[10]   A stress/displacement Virtual Element method for plane elasticity problems [J].
Artioli, E. ;
de Miranda, S. ;
Lovadina, C. ;
Patruno, L. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 325 :155-174