Stabilizing effects of Ag doping on structure and thermal stability of FeN thin films

被引:1
作者
Niti [1 ]
Kumar, Yogesh [1 ]
Seema [1 ]
Reddy, V. R. [1 ]
Vas, Joseph Vimal [2 ]
Gupta, Surbhi [3 ]
Stahn, Jochen [4 ]
Gupta, Ajay [5 ]
Gupta, Mukul [1 ]
机构
[1] UGC DAE Consortium Sci Res, Univ Campus,Khandwa Rd, Indore 452001, India
[2] Nanyang Technol Univ, MajuLab, Int Joint Res Unit UMI 3654, CNRS,Univ Cote Azur,Sorbonne Univ,Natl Univ Singa, Singapore, Singapore
[3] Nanyang Technol Univ, Nat Sci & Sci Educ, Natl Inst Educ, Singapore, Singapore
[4] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland
[5] Univ Petr & Energy Studies, Dept Phys, Dehra Dun 248007, Uttarakhand, India
关键词
transition metal mononitrides; iron mononitride; reactive co-sputtering; self-diffusion; thermal stability; SOFT-MAGNETIC PROPERTIES; MICROSTRUCTURE; MOSSBAUER; NITROGEN; GROWTH; SILVER; ZR; TI;
D O I
10.1088/1361-648X/ac4074
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we investigated the effect of Ag doping (2-20 at.%) on the phase formation of iron mononitride (FeN) thin films. Together with deposition of FeN using reactive dc magnetron sputtering, Ag was also co-sputtered at various doping levels between 2-20 at.%. We found that doping of Ag around 5 at.% is optimum to not only improve the thermal stability of FeN but also to reduce intrinsic defects that are invariably present in (even in epitaxial) FeN. Conversion electron Mossbauer spectroscopy and N K-edge x-ray near edge absorption measurements clearly reveal a reduction of defects in Ag doped FeN samples. Moreover, Fe self-diffusion measurements carried out using secondary ion mass spectroscopy depth-profiling and polarized neutron reflectivity in Fe-57 enriched samples exhibit an appreciable reduction in Fe self-diffusion in Ag doped FeN samples. Ag being immiscible with Fe and non-reactive with N, occupies grain-boundary positions as nanoparticles and prohibits the fast Fe self-diffusion in FeN.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting [J].
Balogun, Muhammad-Sadeeq ;
Huang, Yongchao ;
Qiu, Weitao ;
Yang, Hao ;
Ji, Hongbing ;
Tong, Yexiang .
MATERIALS TODAY, 2017, 20 (08) :425-451
[2]   GenX:: an extensible X-ray reflectivity refinement program utilizing differential evolution [J].
Bjorck, Matts ;
Andersson, Gabriella .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 :1174-1178
[3]  
Brand R. A., 1995, NORMOS MOSSBAUER FIT
[4]   Corrosion resistance and antifouling activities of silver-doped CrN coatings deposited by magnetron sputtering [J].
Cai, Qun ;
Li, Shuxin ;
Pu, Jibin ;
Bai, Xuebing ;
Wang, Haixin ;
Cai, Zhaobing ;
Wang, Xuezhen .
SURFACE & COATINGS TECHNOLOGY, 2018, 354 :194-202
[5]   Thermal stability of ultrasoft Fe-Zr-N films [J].
Chechenin, NG ;
van Veen, A ;
Schut, H ;
Chezan, AR ;
Boerma, D ;
Vystavel, T ;
De Hosson, JTM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (45) :7663-7674
[6]   Magnetic properties and structural implications for nanocrystalline Fe-Ti-N thin films [J].
Das, Jaydip ;
Kalarickal, Sangita S. ;
Kim, Kyoung-Suk ;
Patton, Carl E. .
PHYSICAL REVIEW B, 2007, 75 (09)
[7]   Atomic arrangement in immiscible Ag-Cu alloys synthesized far-from-equilibrium [J].
Elofsson, V. ;
Almyras, G. A. ;
Lu, B. ;
Boyd, R. D. ;
Sarakinos, K. .
ACTA MATERIALIA, 2016, 110 :114-121
[8]   AMOR - the time-of-flight neutron reflectometer at SINQ/PSI [J].
Gupta, M ;
Gutberlet, T ;
Stahn, J ;
Keller, P ;
Clemens, D .
PRAMANA-JOURNAL OF PHYSICS, 2004, 63 (01) :57-63
[9]   Self-diffusion of iron in amorphous iron nitride [J].
Gupta, M ;
Gupta, A ;
Rajagopalan, S ;
Tyagi, AK .
PHYSICAL REVIEW B, 2002, 65 (21) :2142041-2142046
[10]  
Gupta M., 2020, SYNTHESIS STABILITY