Plant Disease Prediction using Transfer Learning Techniques

被引:0
|
作者
Lakshmanarao, A. [1 ]
Supriya, N. [2 ]
Arulinurugan, A. [3 ]
机构
[1] Aditya Engn Coll, Dept Informat Technol, Surampalem, India
[2] Malla Reddy Engn Coll A, Dept CSE, Hyderabad, Telangana, India
[3] Vignans Fdn Sci Technol & Res DEEMED Univ, Guntur, Andhra Pradesh, India
来源
2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT) | 2022年
关键词
Plant Disease; Transfer Learning; Kaggle; Deep Learning;
D O I
10.1109/ICAECT54875.2022.9807956
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Plant diseases are a significant hazard to feed a growing population, but due to a lack of infrastructure in many regions of the world, timely detection is challenging. Finding and detecting plant illness is essential in agricultural production. It takes a great deal of time and effort to find the disease. Agricultural sector can also reap the benefits of machine learning and deep learning. There has been a recent rise in the use of ML &DL techniques in plant disease identification. In this paper, we applied transfer learning technique for plant disease prediction. We used a `plantvillage' dataset collected from Kaggle. Images of fifteen different types of plant leaves (Tomato, Potato, Pepper bell), from three distinct plants are included in this collection. We split the original dataset into three parts for three different plants and applied three transfer learning techniques VGG16, RESNET50, Inception and achieved accuracy of 98.7%, 98.6%, 99% respectively. The results of experiments shown that our proposed model achieved good accuracy when compared to traditional models.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Efficient plant disease identification using few-shot learning: a transfer learning approach
    Uskaner Hepsag, Pinar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (20) : 58293 - 58308
  • [42] Transfer learning for genotype-phenotype prediction using deep learning models
    Muneeb, Muhammad
    Feng, Samuel
    Henschel, Andreas
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [43] Wireless Channel Prediction in Different Locations Using Transfer Learning
    Chen, Jieying
    Sawwan, Abdalaziz
    Yang, Shuhui
    Wu, Jie
    PROCEEDINGS OF THE 2023 INTERNATIONAL SYMPOSIUM ON THEORY, ALGORITHMIC FOUNDATIONS, AND PROTOCOL DESIGN FOR MOBILE NETWORKS AND MOBILE COMPUTING, MOBIHOC 2023, 2023, : 528 - 533
  • [44] Road traffic flow prediction using deep transfer learning
    Wang, Bin
    Yan, Zheng
    Lu, Jie
    Zhang, Guangquan
    Li, Tianrui
    DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT, 2018, 11 : 331 - 338
  • [45] Target Prediction Model for Natural Products Using Transfer Learning
    Qiang, Bo
    Lai, Junyong
    Jin, Hongwei
    Zhang, Liangren
    Liu, Zhenming
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (09)
  • [46] COVID-19 Disease Prediction Using Weighted Ensemble Transfer Learning
    Roy, Pradeep Kumar
    Singh, Ashish
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2023, 8 (01): : 13 - 22
  • [47] Transfer learning for software vulnerability prediction using Transformer models
    Kalouptsoglou, Ilias
    Siavvas, Miltiadis
    Ampatzoglou, Apostolos
    Kehagias, Dionysios
    Chatzigeorgiou, Alexander
    JOURNAL OF SYSTEMS AND SOFTWARE, 2025, 227
  • [48] Plant Disease Classification Using Deep Learning Methods
    Wan, Hu
    Lu, Zheng
    Qi, Wang
    Chen, Yuanyuan
    ICMLSC 2020: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, 2020, : 5 - 9
  • [49] Classification of plant disease using SVM and deep learning
    Thaiyalnayaki, K.
    Joseph, Christeena
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 468 - 470
  • [50] A Survey: Plant Disease Detection Using Deep Learning
    Tripathi, Anshul
    Chourasia, Uday
    Dixit, Priyanka
    Chang, Victor
    INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES, 2021, 12 (03) : 1 - 26